$\sqrt{60} < n$ となる自然数 $n$ のうち、最も小さいものを求めよ。

算数平方根不等式整数
2025/8/11

1. 問題の内容

60<n\sqrt{60} < n となる自然数 nn のうち、最も小さいものを求めよ。

2. 解き方の手順

60\sqrt{60} のおおよその値を求める必要があります。
72=497^2 = 49
82=648^2 = 64
であるので、7<60<87 < \sqrt{60} < 8 であることがわかります。
60<n\sqrt{60} < n となる最小の自然数 nn を探しているので、nn60\sqrt{60} より大きい最小の整数になります。
60\sqrt{60} は 7 より大きく、8 より小さいので、nn は 8 になります。

3. 最終的な答え

8

「算数」の関連問題

$\sqrt{5}-1$ の整数部分を $a$、小数部分を $b$ とするとき、$ab$ の値を求める。

平方根整数部分小数部分代数
2025/8/12

(5) $\frac{\sqrt{2}+1}{\sqrt{3}}$ を計算し、分母を有理化してください。 (6) $\frac{1+\sqrt{5}}{5-3\sqrt{5}}$ を計算し、分母を有理...

分母の有理化平方根の計算根号の計算
2025/8/12

以下の6つの式を計算します。 (1) $\sqrt{3} + \sqrt{48} - \sqrt{27}$ (2) $\sqrt{8} + \sqrt{50}$ (3) $(\sqrt{3} + \s...

平方根根号計算
2025/8/12

## 問題の回答

平方根近似値整数部分小数部分数値計算
2025/8/12

0, 1, 2, 3の4つの数字から重複を許して3つ選び、3桁の整数を作る。作れる整数の総数を求める。

場合の数組み合わせ整数
2025/8/12

与えられた数式の値を計算します。数式は $(-\frac{1}{2})^3 \times 4^2$ です。

計算四則演算分数累乗
2025/8/12

与えられた数式の値を計算します。数式は $(-1/2)^3 \times 4^2$ です。

計算分数累乗
2025/8/12

与えられた計算問題は、$(-2)^3 \times 42$ です。これを計算して答えを求めます。

四則演算累乗負の数
2025/8/12

A組に2人、B組に5人、C組に4人の生徒がいる。各組から1人ずつ選ぶとき、選び方は何通りあるか。

組み合わせ場合の数積の法則
2025/8/12

$\frac{2}{3}$ kg で 800 円の牛肉を $\frac{8}{15}$ kg 買ったときの代金を求める問題です。

割合分数計算
2025/8/12