次の計算をしなさい。 $2(x + 3y)$

代数学分配法則代数式式の展開
2025/8/12

1. 問題の内容

次の計算をしなさい。
2(x+3y)2(x + 3y)

2. 解き方の手順

この問題は、分配法則を使って括弧を外すことで解けます。
分配法則とは、a(b+c)=ab+aca(b + c) = ab + ac というものです。
今回は、a=2a = 2, b=xb = x, c=3yc = 3y なので、
2(x+3y)=2x+23y2(x + 3y) = 2 \cdot x + 2 \cdot 3y
2x2 \cdot x2x2x となり、23y2 \cdot 3y6y6y となります。
したがって、
2x+6y2x + 6y

3. 最終的な答え

2x+6y2x + 6y

「代数学」の関連問題

与えられた方程式 $4(X-3) = 16$ を解いて、$X$ の値を求めます。

一次方程式方程式代数
2025/8/12

次の1次不等式を解きます。 (1) $\frac{2}{3}x - 1 > \frac{1}{2}x + 2$

一次不等式不等式計算
2025/8/12

A君は家から1100m離れた図書館へ行く。最初は自転車で分速200mで進み、途中から徒歩で分速50mで進んだ。9時に家を出て、9時7分に図書館に着いたとき、自転車で進んだ道のりと歩いた道のりを求める。

連立方程式文章問題距離速さ時間
2025/8/12

与えられた方程式 $x/6 - 3 = 4/2$ を解いて、$x$の値を求める問題です。

一次方程式方程式の解法
2025/8/12

一次関数 $y = 5x + 7$ について、変化の割合を求める問題です。

一次関数変化の割合
2025/8/12

与えられた一次方程式 $1.2x - 3 = 1.8 - 0.4x$ を解き、$x$ の値を求める問題です。

一次方程式方程式代数
2025/8/12

与えられた二次関数 $y = -2(x+1)^2 + 6$ の $y$ 切片を求める問題です。

二次関数y切片関数のグラフ
2025/8/12

与えられた2次関数の式 $y = -2(x+1)^2 + 6$ の軸を求める問題です。頂点の座標が $(-1, 6)$ であることが与えられています。

二次関数頂点
2025/8/12

与えられた2次関数 $y = -2(x+1)^2 + 6$ の頂点の座標を求める問題です。

二次関数頂点グラフ
2025/8/12

与えられた2次関数の式 $y = -2(x-1)^2 + 7$ の軸を求める問題です。頂点の座標は $(1, 7)$ と与えられています。

二次関数頂点
2025/8/12