実数 $x, y$ がそれぞれ $x = \sqrt{6 - \sqrt{32}}$ , $y = \sqrt{6 + \sqrt{32}}$ で与えられているとき、$x^3 + 2x^2y + 2xy^2 + y^3$ の値を求めよ。代数学式の計算平方根因数分解式の値2025/8/131. 問題の内容実数 x,yx, yx,y がそれぞれ x=6−32x = \sqrt{6 - \sqrt{32}}x=6−32 , y=6+32y = \sqrt{6 + \sqrt{32}}y=6+32 で与えられているとき、x3+2x2y+2xy2+y3x^3 + 2x^2y + 2xy^2 + y^3x3+2x2y+2xy2+y3 の値を求めよ。2. 解き方の手順まず、xxx と yyy の和と積を計算します。x=6−32=6−42x = \sqrt{6 - \sqrt{32}} = \sqrt{6 - 4\sqrt{2}}x=6−32=6−42y=6+32=6+42y = \sqrt{6 + \sqrt{32}} = \sqrt{6 + 4\sqrt{2}}y=6+32=6+42x+y=6−42+6+42x + y = \sqrt{6 - 4\sqrt{2}} + \sqrt{6 + 4\sqrt{2}}x+y=6−42+6+42(x+y)2=(6−42)+2(6−42)(6+42)+(6+42)=12+236−16×2=12+236−32=12+24=12+2×2=16(x+y)^2 = (6 - 4\sqrt{2}) + 2\sqrt{(6 - 4\sqrt{2})(6 + 4\sqrt{2})} + (6 + 4\sqrt{2}) = 12 + 2\sqrt{36 - 16 \times 2} = 12 + 2\sqrt{36 - 32} = 12 + 2\sqrt{4} = 12 + 2 \times 2 = 16(x+y)2=(6−42)+2(6−42)(6+42)+(6+42)=12+236−16×2=12+236−32=12+24=12+2×2=16x+y=16=4x + y = \sqrt{16} = 4x+y=16=4xy=(6−32)(6+32)=36−32=4=2xy = \sqrt{(6 - \sqrt{32})(6 + \sqrt{32})} = \sqrt{36 - 32} = \sqrt{4} = 2xy=(6−32)(6+32)=36−32=4=2次に、x3+2x2y+2xy2+y3x^3 + 2x^2y + 2xy^2 + y^3x3+2x2y+2xy2+y3 を変形します。x3+2x2y+2xy2+y3=x3+y3+2xy(x+y)=(x+y)(x2−xy+y2)+2xy(x+y)x^3 + 2x^2y + 2xy^2 + y^3 = x^3 + y^3 + 2xy(x+y) = (x+y)(x^2 - xy + y^2) + 2xy(x+y)x3+2x2y+2xy2+y3=x3+y3+2xy(x+y)=(x+y)(x2−xy+y2)+2xy(x+y)=(x+y)(x2−xy+y2+2xy)=(x+y)(x2+xy+y2)=(x+y)((x+y)2−xy) = (x+y)(x^2 - xy + y^2 + 2xy) = (x+y)(x^2 + xy + y^2) = (x+y)((x+y)^2 - xy)=(x+y)(x2−xy+y2+2xy)=(x+y)(x2+xy+y2)=(x+y)((x+y)2−xy)x+y=4,xy=2x+y = 4, xy = 2x+y=4,xy=2 を代入します。(x+y)((x+y)2−xy)=4(42−2)=4(16−2)=4×14=56(x+y)((x+y)^2 - xy) = 4(4^2 - 2) = 4(16 - 2) = 4 \times 14 = 56(x+y)((x+y)2−xy)=4(42−2)=4(16−2)=4×14=563. 最終的な答え56