与えられた8つの数式を計算し、簡略化します。算数平方根計算式の簡略化2025/4/71. 問題の内容与えられた8つの数式を計算し、簡略化します。2. 解き方の手順(1) −22+18-2\sqrt{2} + \sqrt{18}−22+1818=9×2=32\sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2}18=9×2=32なので、−22+32=2-2\sqrt{2} + 3\sqrt{2} = \sqrt{2}−22+32=2(2) 27+12−3\sqrt{27} + \sqrt{12} - \sqrt{3}27+12−327=9×3=33\sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3}27=9×3=3312=4×3=23\sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3}12=4×3=2333+23−3=433\sqrt{3} + 2\sqrt{3} - \sqrt{3} = 4\sqrt{3}33+23−3=43(3) 125+80−45\sqrt{125} + \sqrt{80} - \sqrt{45}125+80−45125=25×5=55\sqrt{125} = \sqrt{25 \times 5} = 5\sqrt{5}125=25×5=5580=16×5=45\sqrt{80} = \sqrt{16 \times 5} = 4\sqrt{5}80=16×5=4545=9×5=35\sqrt{45} = \sqrt{9 \times 5} = 3\sqrt{5}45=9×5=3555+45−35=655\sqrt{5} + 4\sqrt{5} - 3\sqrt{5} = 6\sqrt{5}55+45−35=65(4) 6×8−15÷5\sqrt{6} \times \sqrt{8} - \sqrt{15} \div \sqrt{5}6×8−15÷56×8=48=16×3=43\sqrt{6} \times \sqrt{8} = \sqrt{48} = \sqrt{16 \times 3} = 4\sqrt{3}6×8=48=16×3=4315÷5=3\sqrt{15} \div \sqrt{5} = \sqrt{3}15÷5=343−3=334\sqrt{3} - \sqrt{3} = 3\sqrt{3}43−3=33(5) (5+4)2(\sqrt{5} + 4)^2(5+4)2(5+4)2=(5)2+2×4×5+42=5+85+16=21+85(\sqrt{5} + 4)^2 = (\sqrt{5})^2 + 2 \times 4 \times \sqrt{5} + 4^2 = 5 + 8\sqrt{5} + 16 = 21 + 8\sqrt{5}(5+4)2=(5)2+2×4×5+42=5+85+16=21+85(6) (3+1)(3+2)(\sqrt{3} + 1)(\sqrt{3} + 2)(3+1)(3+2)(3+1)(3+2)=(3)2+23+3+2=3+33+2=5+33(\sqrt{3} + 1)(\sqrt{3} + 2) = (\sqrt{3})^2 + 2\sqrt{3} + \sqrt{3} + 2 = 3 + 3\sqrt{3} + 2 = 5 + 3\sqrt{3}(3+1)(3+2)=(3)2+23+3+2=3+33+2=5+33(7) 5(5−3)+20\sqrt{5}(\sqrt{5} - 3) + \sqrt{20}5(5−3)+205(5−3)=5−35\sqrt{5}(\sqrt{5} - 3) = 5 - 3\sqrt{5}5(5−3)=5−3520=4×5=25\sqrt{20} = \sqrt{4 \times 5} = 2\sqrt{5}20=4×5=255−35+25=5−55 - 3\sqrt{5} + 2\sqrt{5} = 5 - \sqrt{5}5−35+25=5−5(8) (2+5)(5−22)(\sqrt{2} + \sqrt{5})(\sqrt{5} - 2\sqrt{2})(2+5)(5−22)(2+5)(5−22)=25−2(2)2+(5)2−252=10−4+5−210=1−10(\sqrt{2} + \sqrt{5})(\sqrt{5} - 2\sqrt{2}) = \sqrt{2}\sqrt{5} - 2(\sqrt{2})^2 + (\sqrt{5})^2 - 2\sqrt{5}\sqrt{2} = \sqrt{10} - 4 + 5 - 2\sqrt{10} = 1 - \sqrt{10}(2+5)(5−22)=25−2(2)2+(5)2−252=10−4+5−210=1−103. 最終的な答え(1) 2\sqrt{2}2(2) 434\sqrt{3}43(3) 656\sqrt{5}65(4) 333\sqrt{3}33(5) 21+8521 + 8\sqrt{5}21+85(6) 5+335 + 3\sqrt{3}5+33(7) 5−55 - \sqrt{5}5−5(8) 1−101 - \sqrt{10}1−10