それぞれの問題について、仮分数に直してから通分し、足し算を行います。最後に帯分数に戻せる場合は戻します。
⑥ 151+173 まず、帯分数を仮分数に変換します。
151=51×5+1=56 173=71×7+3=710 次に、56 と 710 を足し合わせるために、分母を揃えます。最小公倍数は 35 なので、 56=5×76×7=3542 710=7×510×5=3550 したがって、
3542+3550=3542+50=3592 最後に、仮分数を帯分数に戻します。
3592=23522 ⑦ 2187+165 まず、帯分数を仮分数に変換します。
2187=182×18+7=1843 165=61×6+5=611 次に、1843 と 611 を足し合わせるために、分母を揃えます。最小公倍数は 18 なので、 611=6×311×3=1833 したがって、
1843+1833=1843+33=1876 最後に、仮分数を帯分数に戻して約分します。
1876=4184=492 ⑧ 1158+12011 まず、帯分数を仮分数に変換します。
1158=151×15+8=1523 12011=201×20+11=2031 次に、1523 と 2031 を足し合わせるために、分母を揃えます。最小公倍数は 60 なので、 1523=15×423×4=6092 2031=20×331×3=6093 したがって、
6092+6093=6092+93=60185 最後に、仮分数を帯分数に戻して約分します。
60185=3605=3121 ⑨ 376+149 まず、帯分数を仮分数に変換します。
376=73×7+6=727 次に、727 と 149 を足し合わせるために、分母を揃えます。最小公倍数は 14 なので、 727=7×227×2=1454 したがって、
1454+149=1454+9=1463 最後に、仮分数を帯分数に戻して約分します。
1463=4147=421 ⑩ 1514+261 まず、帯分数を仮分数に変換します。
261=62×6+1=613 次に、1514 と 613 を足し合わせるために、分母を揃えます。最小公倍数は 30 なので、 1514=15×214×2=3028 613=6×513×5=3065 したがって、
3028+3065=3028+65=3093 最後に、仮分数を帯分数に戻して約分します。
3093=3303=3101