We first simplify the numerator.
Using the product-to-sum identity,
sinasinb=21[cos(a−b)−cos(a+b)], we have sin(x+3π)sin(x+32π)=21[cos(−3π)−cos(2x+π)]=21[cos(3π)−cos(2x+π)]=21[21−(−cos2x)]=41+21cos2x. Then the numerator becomes
sinx(41+21cos2x)=41sinx+21sinxcos2x=41sinx+21sinx(1−2sin2x)=41sinx+21sinx−sin3x=43sinx−sin3x. We can use the triple angle formula sin3x=3sinx−4sin3x, which implies sin3x=43sinx−sin3x. Therefore, the numerator is 43sinx−43sinx−sin3x=43sinx−3sinx+sin3x=41sin3x. The integral becomes ∫06πsin3x+cos3x41sin3xdx. Let u=3x. Then du=3dx, so dx=31du. When x=0, u=0. When x=6π, u=3(6π)=2π. The integral becomes ∫02πsinu+cosu41sinu31du=121∫02πsinu+cosusinudu. Let I=∫02πsinu+cosusinudu. Using the substitution u=2π−v, du=−dv. When u=0, v=2π. When u=2π, v=0. I=∫2π0sin(2π−v)+cos(2π−v)sin(2π−v)(−dv)=∫02πcosv+sinvcosvdv. So I=∫02πcosu+sinucosudu. Therefore, 2I=∫02πsinu+cosusinudu+∫02πsinu+cosucosudu=∫02πsinu+cosusinu+cosudu=∫02π1du=[u]02π=2π. Thus, I=4π. The original integral becomes 121⋅4π=48π.