We are asked to evaluate the definite integral $\int_{0}^{\frac{\pi}{6}} \frac{\sin x \sin(x + \frac{\pi}{3}) \sin(x + \frac{2\pi}{3})}{\sin 3x + \cos 3x} dx$.

AnalysisDefinite IntegralTrigonometric IdentitiesSubstitutionIntegration Techniques
2025/4/12

1. Problem Description

We are asked to evaluate the definite integral
0π6sinxsin(x+π3)sin(x+2π3)sin3x+cos3xdx\int_{0}^{\frac{\pi}{6}} \frac{\sin x \sin(x + \frac{\pi}{3}) \sin(x + \frac{2\pi}{3})}{\sin 3x + \cos 3x} dx.

2. Solution Steps

We first simplify the numerator.
Using the product-to-sum identity,
sinasinb=12[cos(ab)cos(a+b)]\sin a \sin b = \frac{1}{2}[\cos(a-b) - \cos(a+b)], we have
sin(x+π3)sin(x+2π3)=12[cos(π3)cos(2x+π)]=12[cos(π3)cos(2x+π)]=12[12(cos2x)]=14+12cos2x\sin(x + \frac{\pi}{3}) \sin(x + \frac{2\pi}{3}) = \frac{1}{2}[\cos(-\frac{\pi}{3}) - \cos(2x + \pi)] = \frac{1}{2}[\cos(\frac{\pi}{3}) - \cos(2x + \pi)] = \frac{1}{2}[\frac{1}{2} - (-\cos 2x)] = \frac{1}{4} + \frac{1}{2} \cos 2x.
Then the numerator becomes
sinx(14+12cos2x)=14sinx+12sinxcos2x=14sinx+12sinx(12sin2x)=14sinx+12sinxsin3x=34sinxsin3x\sin x (\frac{1}{4} + \frac{1}{2} \cos 2x) = \frac{1}{4}\sin x + \frac{1}{2} \sin x \cos 2x = \frac{1}{4} \sin x + \frac{1}{2} \sin x (1-2\sin^2 x) = \frac{1}{4}\sin x + \frac{1}{2} \sin x - \sin^3 x = \frac{3}{4} \sin x - \sin^3 x.
We can use the triple angle formula sin3x=3sinx4sin3x\sin 3x = 3\sin x - 4\sin^3 x, which implies sin3x=3sinxsin3x4\sin^3 x = \frac{3\sin x - \sin 3x}{4}.
Therefore, the numerator is 34sinx3sinxsin3x4=3sinx3sinx+sin3x4=14sin3x\frac{3}{4} \sin x - \frac{3\sin x - \sin 3x}{4} = \frac{3\sin x - 3\sin x + \sin 3x}{4} = \frac{1}{4}\sin 3x.
The integral becomes 0π614sin3xsin3x+cos3xdx\int_{0}^{\frac{\pi}{6}} \frac{\frac{1}{4} \sin 3x}{\sin 3x + \cos 3x} dx.
Let u=3xu = 3x. Then du=3dxdu = 3dx, so dx=13dudx = \frac{1}{3} du.
When x=0x=0, u=0u=0. When x=π6x=\frac{\pi}{6}, u=3(π6)=π2u = 3(\frac{\pi}{6}) = \frac{\pi}{2}.
The integral becomes 0π214sinusinu+cosu13du=1120π2sinusinu+cosudu\int_{0}^{\frac{\pi}{2}} \frac{\frac{1}{4}\sin u}{\sin u + \cos u} \frac{1}{3} du = \frac{1}{12} \int_{0}^{\frac{\pi}{2}} \frac{\sin u}{\sin u + \cos u} du.
Let I=0π2sinusinu+cosuduI = \int_{0}^{\frac{\pi}{2}} \frac{\sin u}{\sin u + \cos u} du.
Using the substitution u=π2vu = \frac{\pi}{2} - v, du=dvdu = -dv.
When u=0u=0, v=π2v=\frac{\pi}{2}. When u=π2u=\frac{\pi}{2}, v=0v=0.
I=π20sin(π2v)sin(π2v)+cos(π2v)(dv)=0π2cosvcosv+sinvdvI = \int_{\frac{\pi}{2}}^{0} \frac{\sin(\frac{\pi}{2} - v)}{\sin(\frac{\pi}{2} - v) + \cos(\frac{\pi}{2} - v)} (-dv) = \int_{0}^{\frac{\pi}{2}} \frac{\cos v}{\cos v + \sin v} dv.
So I=0π2cosucosu+sinuduI = \int_{0}^{\frac{\pi}{2}} \frac{\cos u}{\cos u + \sin u} du.
Therefore, 2I=0π2sinusinu+cosudu+0π2cosusinu+cosudu=0π2sinu+cosusinu+cosudu=0π21du=[u]0π2=π22I = \int_{0}^{\frac{\pi}{2}} \frac{\sin u}{\sin u + \cos u} du + \int_{0}^{\frac{\pi}{2}} \frac{\cos u}{\sin u + \cos u} du = \int_{0}^{\frac{\pi}{2}} \frac{\sin u + \cos u}{\sin u + \cos u} du = \int_{0}^{\frac{\pi}{2}} 1 du = [u]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2}.
Thus, I=π4I = \frac{\pi}{4}.
The original integral becomes 112π4=π48\frac{1}{12} \cdot \frac{\pi}{4} = \frac{\pi}{48}.

3. Final Answer

π48\frac{\pi}{48}

Related problems in "Analysis"

We are asked to evaluate the double integral $\int_{-1}^{4}\int_{1}^{2} (x+y^2) \, dy \, dx$.

Double IntegralsIntegration
2025/6/5

The problem asks us to evaluate the double integral $\int_0^2 \int_1^3 x^2 y \, dy \, dx$.

Double IntegralIntegrationCalculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) dA$, where $R = \{(x, y): 1 \le x \le ...

Double IntegralsPiecewise FunctionsIntegrationMultivariable Calculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) \, dA$, where $R = \{(x, y): 1 \le x \...

Double IntegralsPiecewise FunctionsIntegration
2025/6/5

We are asked to evaluate the indefinite integral $\int xe^{-2x} dx$.

IntegrationIntegration by PartsIndefinite Integral
2025/6/5

We are asked to evaluate the triple integral $I = \int_0^{\log_e 2} \int_0^x \int_0^{x+\log_e y} e^{...

Multiple IntegralsIntegration by PartsCalculus
2025/6/4

The problem asks us to evaluate the following limit: $ \lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac...

LimitsTrigonometryCalculus
2025/6/4

We need to evaluate the limit of the expression $(x + \sqrt{x^2 - 9})$ as $x$ approaches negative in...

LimitsCalculusFunctionsConjugateInfinity
2025/6/4

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4