与えられた連立方程式 $Ma = T$ $ma = mg - T$ から、$T$と$a$を、$m$, $M$, $g$を用いて表す。

応用数学連立方程式物理運動方程式力学
2025/4/13

1. 問題の内容

与えられた連立方程式
Ma=TMa = T
ma=mgTma = mg - T
から、TTaaを、mm, MM, ggを用いて表す。

2. 解き方の手順

まず、最初の式からTTMaMaで置き換えることができるので、2番目の式に代入します。
ma=mgMama = mg - Ma
次に、aaについて解きます。aaを含む項を左辺に集め、右辺を整理します。
ma+Ma=mgma + Ma = mg
(m+M)a=mg(m + M)a = mg
a=mgm+Ma = \frac{mg}{m + M}
これでaaを求めることができました。次に、TTを求めます。最初の式 Ma=TMa = T に、aaの値を代入します。
T=Mmgm+MT = M \cdot \frac{mg}{m + M}
T=Mmgm+MT = \frac{Mmg}{m + M}

3. 最終的な答え

a=mgm+Ma = \frac{mg}{m+M}
T=Mmgm+MT = \frac{Mmg}{m+M}

「応用数学」の関連問題

A町、B町、C町における発電について調査した。一つの表には、単位電力あたりの発電費用、単位電力あたりのCO2排出量、単位電力あたりの燃料使用量を、発電種別(火力発電、水力発電)ごとにまとめた。別の表に...

行列電力表計算
2025/6/7

光の進む速さが毎秒 $3.0 \times 10^8$ m であるとき、光が 1 km を進むのにかかる時間(秒)を、$3.3 \times 10^{\square}$ の形で求め、$\square$...

物理速さ距離時間指数単位変換科学計算
2025/6/7

完全競争市場におけるある企業の総費用曲線が $TC = X^3 - 4X^2 + 8X + 6$ (Xは生産量)で与えられているとき、この企業の操業停止点価格を求める問題です。

最適化経済学微分費用関数操業停止点
2025/6/7

完全競争市場における企業の総費用曲線が $TC = X^3 - 4X^2 + 8X + 6$ で与えられているとき、操業停止点における生産量((1)に入る数字)を求める問題です。

最適化微分経済学費用関数操業停止点
2025/6/7

完全競争市場における企業の総費用曲線が $TC = X^3 - 24X^2 + 394X$ で与えられているとき、損益分岐点価格を求める問題です。ここで、$X$は生産量です。

経済学費用関数損益分岐点微分最適化
2025/6/7

完全競争市場における企業の総費用曲線が $TC = X^3 - 24X^2 + 394X$ で与えられているとき、損益分岐点における生産量を求めなさい。ここで、$X$は生産量を表します。

経済学損益分岐点費用関数微分最適化
2025/6/7

振動数 $680 \ Hz$ の音が空気中から海水中に伝わるとき、空気中と海水中の波長を求め、波面の様子が図(ア)と(イ)のどちらが正しいか答えよ。ただし、空気中の音速は $340 \ m/s$、海水...

音波音速波長屈折
2025/6/7

長さ $l$ の弦が張力 $S$ で張られている。弦の一端から $x$ の位置に質量 $m$ のおもりをつけ、水平面内で糸に垂直な方向に微小振動させた。このときの周期を $x$ の関数として求めよ。た...

力学振動微分方程式物理
2025/6/7

与えられた2つの力とつりあう1つの力を図示する問題です。 つりあうということは、3つの力のベクトル和が0になるということです。

ベクトル力の合成力のつりあい物理
2025/6/7

完全競争市場における企業の総費用曲線が $TC = X^3 - 4X^2 + 8X + 6$ で与えられているとき、操業停止点における生産量(1)を求める問題です。ここでXは生産量です。

経済学最適化微分平均可変費用操業停止点
2025/6/7