各問題に対して、分配法則((a+b)(c+d) = ac + ad + bc + bd)を用いて展開します。
(1) (2x+1)(4x+5) = 2x⋅4x+2x⋅5+1⋅4x+1⋅5 = 8x2+10x+4x+5 = 8x2+14x+5 (2) (x+4)(2x−3) = x⋅2x+x⋅(−3)+4⋅2x+4⋅(−3) = 2x2−3x+8x−12 = 2x2+5x−12 (3) (3x−7)(x+2) = 3x⋅x+3x⋅2+(−7)⋅x+(−7)⋅2 = 3x2+6x−7x−14 = 3x2−x−14 (4) (2x−5)(2x−1) = 2x⋅2x+2x⋅(−1)+(−5)⋅2x+(−5)⋅(−1) = 4x2−2x−10x+5 = 4x2−12x+5 (5) (x+2y)(3x−y) = x⋅3x+x⋅(−y)+2y⋅3x+2y⋅(−y) = 3x2−xy+6xy−2y2 = 3x2+5xy−2y2 (6) (3x−2a)(4x−3a) = 3x⋅4x+3x⋅(−3a)+(−2a)⋅4x+(−2a)⋅(−3a) = 12x2−9ax−8ax+6a2 = 12x2−17ax+6a2