We are asked to evaluate the limit: $\lim_{x\to\infty} \frac{e^x + 2x - 1}{2e^x + 1}$

AnalysisLimitsL'Hopital's RuleExponential Functions
2025/4/20

1. Problem Description

We are asked to evaluate the limit:
limxex+2x12ex+1\lim_{x\to\infty} \frac{e^x + 2x - 1}{2e^x + 1}

2. Solution Steps

To evaluate the limit, we can divide both the numerator and the denominator by exe^x.
limxex+2x12ex+1=limxexex+2xex1ex2exex+1ex=limx1+2xex1ex2+1ex\lim_{x\to\infty} \frac{e^x + 2x - 1}{2e^x + 1} = \lim_{x\to\infty} \frac{\frac{e^x}{e^x} + \frac{2x}{e^x} - \frac{1}{e^x}}{\frac{2e^x}{e^x} + \frac{1}{e^x}} = \lim_{x\to\infty} \frac{1 + \frac{2x}{e^x} - \frac{1}{e^x}}{2 + \frac{1}{e^x}}
Now we analyze the limits of the terms 2xex\frac{2x}{e^x} and 1ex\frac{1}{e^x} as xx \to \infty.
limx1ex=0\lim_{x\to\infty} \frac{1}{e^x} = 0
To evaluate limx2xex\lim_{x\to\infty} \frac{2x}{e^x}, we can use L'Hopital's rule, since it is in the indeterminate form \frac{\infty}{\infty}.
Taking the derivative of the numerator and denominator, we get:
limx2xex=limx2ex=0\lim_{x\to\infty} \frac{2x}{e^x} = \lim_{x\to\infty} \frac{2}{e^x} = 0
Thus we have:
limx1+2xex1ex2+1ex=1+002+0=12\lim_{x\to\infty} \frac{1 + \frac{2x}{e^x} - \frac{1}{e^x}}{2 + \frac{1}{e^x}} = \frac{1 + 0 - 0}{2 + 0} = \frac{1}{2}

3. Final Answer

The final answer is 12\frac{1}{2}

Related problems in "Analysis"

Solve the inequality $\cos(\frac{1}{2}\theta - \frac{\pi}{3}) \le \frac{1}{\sqrt{2}}$.

TrigonometryInequalitiesTrigonometric InequalitiesIntervals
2025/4/22

The problem asks us to differentiate the function $y = \sqrt[3]{(ax+b)^2}$ with respect to $x$.

DifferentiationChain RuleDerivativesCalculus
2025/4/22

a. Find the equation of the tangent plane to $z = \ln(2x+y)$ at the point $(1, 2)$. b. Let $\sum_{x=...

Multivariable CalculusPartial DerivativesTangent PlaneInfinite Seriesp-seriesConvergence TestsIntegral Test
2025/4/21

We are asked to solve the following problems: a. Find the equation of the tangent plane to $z = \ln(...

Tangent PlaneSeries ConvergencePartial DerivativesRatio TestIntegrationMidpoint RuleSimpson's RuleRadius of ConvergenceMultivariable Calculus
2025/4/21

The problem asks to differentiate the function $y = (2x+1)^{-1}$.

DifferentiationChain RuleQuotient RuleCalculus
2025/4/20

The question asks how the domains of the pieces of a piecewise-defined function relate to the entire...

Piecewise FunctionsDomainFunction Definition
2025/4/18

Given the function $f(x) = \frac{x^2 + 2x + 1}{x-1}$, we are asked to: 1) Find real numbers $a$, $b$...

LimitsDerivativesTable of VariationsRational Functions
2025/4/17

The problem asks us to analyze the function $f(x) = 5 \cdot (\frac{1}{2})^x$ and graph it.

Exponential FunctionsFunction AnalysisGraphing
2025/4/17

We are given two functions: $f(x) = x + 2 + \frac{4}{x-1}$ and $g(x) = x \ln x$. We need to study th...

CalculusDerivativesFunction AnalysisIncreasing/Decreasing FunctionsCritical Points
2025/4/16

We need to evaluate the definite integral of $\frac{1}{1+x^{60}}$ from $0$ to $\infty$. That is, we ...

Definite IntegralIntegrationCalculusSpecial Functions
2025/4/16