We are asked to solve the following problems: a. Find the equation of the tangent plane to $z = \ln(2x+y)$ at the point $(1,2)$. b. State that the series $\sum_{x=1}^\infty \frac{1}{x^p}$ is a p-series and converges if $p>1$ and diverges if $0 < p \le 1$. c. Given $u = (x^2+y^2+z^2)^{\frac{1}{2}}$, find $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$. d. If $a_n > 0$ for all $n$, prove that if $\frac{a_{n+1}}{a_n} < k < 1$, where k is a constant, then $\sum a_n$ is convergent. Hence, show that $\sum_{n=1}^\infty \frac{2^n}{n^3+1}$ diverges. e. Use the 5-segment method to integrate $f(x) = 2+5x+3x^2+2x^3$ from $a=0$ to $b=2.5$ using: [i] Mid-ordinate rule. Determine the relative error. [ii] Simpson's one-third rule. Determine the relative error. f. Find the slopes of the traces to $z = 10-4x^2-y^2$ at the point $(1,2)$. g. Find the radius of convergence for the power series $\sum_{n=1}^\infty \frac{n(-1)^n}{4^n} (x+3)^n$.

AnalysisTangent PlaneSeries ConvergencePartial DerivativesRatio TestIntegrationMidpoint RuleSimpson's RuleRadius of ConvergenceMultivariable Calculus
2025/4/21

1. Problem Description

We are asked to solve the following problems:
a. Find the equation of the tangent plane to z=ln(2x+y)z = \ln(2x+y) at the point (1,2)(1,2).
b. State that the series x=11xp\sum_{x=1}^\infty \frac{1}{x^p} is a p-series and converges if p>1p>1 and diverges if 0<p10 < p \le 1.
c. Given u=(x2+y2+z2)12u = (x^2+y^2+z^2)^{\frac{1}{2}}, find 2ux2+2uy2+2uz2\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}.
d. If an>0a_n > 0 for all nn, prove that if an+1an<k<1\frac{a_{n+1}}{a_n} < k < 1, where k is a constant, then an\sum a_n is convergent. Hence, show that n=12nn3+1\sum_{n=1}^\infty \frac{2^n}{n^3+1} diverges.
e. Use the 5-segment method to integrate f(x)=2+5x+3x2+2x3f(x) = 2+5x+3x^2+2x^3 from a=0a=0 to b=2.5b=2.5 using:
[i] Mid-ordinate rule. Determine the relative error.
[ii] Simpson's one-third rule. Determine the relative error.
f. Find the slopes of the traces to z=104x2y2z = 10-4x^2-y^2 at the point (1,2)(1,2).
g. Find the radius of convergence for the power series n=1n(1)n4n(x+3)n\sum_{n=1}^\infty \frac{n(-1)^n}{4^n} (x+3)^n.

2. Solution Steps

a. To find the equation of the tangent plane to z=ln(2x+y)z = \ln(2x+y) at (1,2)(1,2), we need to find the partial derivatives with respect to xx and yy.
zx=22x+y\frac{\partial z}{\partial x} = \frac{2}{2x+y} and zy=12x+y\frac{\partial z}{\partial y} = \frac{1}{2x+y}.
At (1,2)(1,2), z=ln(2(1)+2)=ln(4)z = \ln(2(1)+2) = \ln(4).
zx(1,2)=22(1)+2=24=12\frac{\partial z}{\partial x}(1,2) = \frac{2}{2(1)+2} = \frac{2}{4} = \frac{1}{2}.
zy(1,2)=12(1)+2=14\frac{\partial z}{\partial y}(1,2) = \frac{1}{2(1)+2} = \frac{1}{4}.
The equation of the tangent plane is given by
zz0=zx(xx0)+zy(yy0)z - z_0 = \frac{\partial z}{\partial x}(x-x_0) + \frac{\partial z}{\partial y}(y-y_0).
zln(4)=12(x1)+14(y2)z - \ln(4) = \frac{1}{2}(x-1) + \frac{1}{4}(y-2)
z=12x+14y1212+ln(4)z = \frac{1}{2}x + \frac{1}{4}y - \frac{1}{2} - \frac{1}{2} + \ln(4)
z=12x+14y1+ln(4)z = \frac{1}{2}x + \frac{1}{4}y - 1 + \ln(4)
b. The statement is a known result about p-series.
c. u=(x2+y2+z2)12u = (x^2+y^2+z^2)^{\frac{1}{2}}.
ux=12(x2+y2+z2)12(2x)=xx2+y2+z2\frac{\partial u}{\partial x} = \frac{1}{2}(x^2+y^2+z^2)^{-\frac{1}{2}} (2x) = \frac{x}{\sqrt{x^2+y^2+z^2}}.
2ux2=x2+y2+z2x2x2x2+y2+z2x2+y2+z2=x2+y2+z2x2(x2+y2+z2)32=y2+z2(x2+y2+z2)32\frac{\partial^2 u}{\partial x^2} = \frac{\sqrt{x^2+y^2+z^2} - x \frac{2x}{2\sqrt{x^2+y^2+z^2}}}{x^2+y^2+z^2} = \frac{x^2+y^2+z^2 - x^2}{(x^2+y^2+z^2)^{\frac{3}{2}}} = \frac{y^2+z^2}{(x^2+y^2+z^2)^{\frac{3}{2}}}.
Similarly, 2uy2=x2+z2(x2+y2+z2)32\frac{\partial^2 u}{\partial y^2} = \frac{x^2+z^2}{(x^2+y^2+z^2)^{\frac{3}{2}}} and 2uz2=x2+y2(x2+y2+z2)32\frac{\partial^2 u}{\partial z^2} = \frac{x^2+y^2}{(x^2+y^2+z^2)^{\frac{3}{2}}}.
2ux2+2uy2+2uz2=y2+z2+x2+z2+x2+y2(x2+y2+z2)32=2(x2+y2+z2)(x2+y2+z2)32=2x2+y2+z2\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{y^2+z^2+x^2+z^2+x^2+y^2}{(x^2+y^2+z^2)^{\frac{3}{2}}} = \frac{2(x^2+y^2+z^2)}{(x^2+y^2+z^2)^{\frac{3}{2}}} = \frac{2}{\sqrt{x^2+y^2+z^2}}.
d. This is the Ratio Test. For the series n=12nn3+1\sum_{n=1}^\infty \frac{2^n}{n^3+1},
an+1an=2n+1(n+1)3+1n3+12n=2n3+1(n+1)3+1=2n3+1n3+3n2+3n+2\frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{(n+1)^3+1} \cdot \frac{n^3+1}{2^n} = 2 \frac{n^3+1}{(n+1)^3+1} = 2 \frac{n^3+1}{n^3+3n^2+3n+2}.
limnan+1an=2limn1+1n31+3n+3n2+2n3=2>1\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 2 \lim_{n\to\infty} \frac{1+\frac{1}{n^3}}{1+\frac{3}{n}+\frac{3}{n^2}+\frac{2}{n^3}} = 2 > 1. Since the limit is greater than 1, the series diverges.
e. We have f(x)=2+5x+3x2+2x3f(x) = 2+5x+3x^2+2x^3. a=0a=0, b=2.5b=2.5, and the number of segments is 5, so the width of each segment is h=2.505=0.5h = \frac{2.5-0}{5} = 0.5.
[i] Mid-ordinate rule:
The midpoints are 0.25,0.75,1.25,1.75,2.250.25, 0.75, 1.25, 1.75, 2.25.
f(0.25)=2+5(0.25)+3(0.25)2+2(0.25)3=2+1.25+0.1875+0.03125=3.46875f(0.25) = 2 + 5(0.25) + 3(0.25)^2 + 2(0.25)^3 = 2 + 1.25 + 0.1875 + 0.03125 = 3.46875
f(0.75)=2+5(0.75)+3(0.75)2+2(0.75)3=2+3.75+1.6875+0.84375=8.28125f(0.75) = 2 + 5(0.75) + 3(0.75)^2 + 2(0.75)^3 = 2 + 3.75 + 1.6875 + 0.84375 = 8.28125
f(1.25)=2+5(1.25)+3(1.25)2+2(1.25)3=2+6.25+4.6875+3.90625=16.84375f(1.25) = 2 + 5(1.25) + 3(1.25)^2 + 2(1.25)^3 = 2 + 6.25 + 4.6875 + 3.90625 = 16.84375
f(1.75)=2+5(1.75)+3(1.75)2+2(1.75)3=2+8.75+9.1875+10.71875=30.65625f(1.75) = 2 + 5(1.75) + 3(1.75)^2 + 2(1.75)^3 = 2 + 8.75 + 9.1875 + 10.71875 = 30.65625
f(2.25)=2+5(2.25)+3(2.25)2+2(2.25)3=2+11.25+15.1875+22.78125=51.21875f(2.25) = 2 + 5(2.25) + 3(2.25)^2 + 2(2.25)^3 = 2 + 11.25 + 15.1875 + 22.78125 = 51.21875
Integral hi=15f(xi)=0.5(3.46875+8.28125+16.84375+30.65625+51.21875)=0.5(110.46875)=55.234375\approx h \sum_{i=1}^5 f(x_i) = 0.5(3.46875+8.28125+16.84375+30.65625+51.21875) = 0.5(110.46875) = 55.234375
Exact integral: 02.5(2+5x+3x2+2x3)dx=[2x+5x22+x3+x42]02.5=2(2.5)+5(2.5)22+(2.5)3+(2.5)42=5+15.625+15.625+19.53125=55.78125\int_0^{2.5} (2+5x+3x^2+2x^3) dx = [2x+\frac{5x^2}{2} + x^3 + \frac{x^4}{2}]_0^{2.5} = 2(2.5) + \frac{5(2.5)^2}{2} + (2.5)^3 + \frac{(2.5)^4}{2} = 5 + 15.625 + 15.625 + 19.53125 = 55.78125.
Relative error = 55.7812555.23437555.78125=0.54687555.781250.009803=0.9803%\frac{|55.78125 - 55.234375|}{55.78125} = \frac{0.546875}{55.78125} \approx 0.009803 = 0.9803\%.
[ii] Simpson's one-third rule:
h=0.5h = 0.5.
x0=0,x1=0.5,x2=1,x3=1.5,x4=2,x5=2.5x_0 = 0, x_1 = 0.5, x_2 = 1, x_3 = 1.5, x_4 = 2, x_5 = 2.5.
f(0)=2,f(0.5)=2+5(0.5)+3(0.5)2+2(0.5)3=2+2.5+0.75+0.25=5.5f(0) = 2, f(0.5) = 2 + 5(0.5) + 3(0.5)^2 + 2(0.5)^3 = 2 + 2.5 + 0.75 + 0.25 = 5.5
f(1)=2+5(1)+3(1)2+2(1)3=2+5+3+2=12f(1) = 2 + 5(1) + 3(1)^2 + 2(1)^3 = 2 + 5 + 3 + 2 = 12
f(1.5)=2+5(1.5)+3(1.5)2+2(1.5)3=2+7.5+6.75+6.75=23.0f(1.5) = 2 + 5(1.5) + 3(1.5)^2 + 2(1.5)^3 = 2 + 7.5 + 6.75 + 6.75 = 23.0
f(2)=2+5(2)+3(2)2+2(2)3=2+10+12+16=40f(2) = 2 + 5(2) + 3(2)^2 + 2(2)^3 = 2 + 10 + 12 + 16 = 40
f(2.5)=2+5(2.5)+3(2.5)2+2(2.5)3=2+12.5+18.75+31.25=64.5f(2.5) = 2 + 5(2.5) + 3(2.5)^2 + 2(2.5)^3 = 2 + 12.5 + 18.75 + 31.25 = 64.5
02.5f(x)dxh3[f(x0)+4f(x1)+2f(x2)+4f(x3)+2f(x4)+f(x5)]=0.53[2+4(5.5)+2(12)+4(23)+2(40)+64.5]=0.53[2+22+24+92+80+64.5]=0.53[284.5]=142.253=47.416666...\int_0^{2.5} f(x) dx \approx \frac{h}{3}[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + f(x_5)] = \frac{0.5}{3}[2 + 4(5.5) + 2(12) + 4(23) + 2(40) + 64.5] = \frac{0.5}{3}[2+22+24+92+80+64.5] = \frac{0.5}{3}[284.5] = \frac{142.25}{3} = 47.416666....
Using Simpson's rule:
h3[f(0)+4f(0.5)+2f(1)+4f(1.5)+2f(2)+f(2.5)]\frac{h}{3}[f(0) + 4f(0.5) + 2f(1) + 4f(1.5) + 2f(2) + f(2.5)]
=0.53[2+4(5.5)+2(12)+4(23)+2(40)+64.5]=0.53[2+22+24+92+80+64.5]=0.53(284.5)=47.41666...= \frac{0.5}{3} [2 + 4(5.5) + 2(12) + 4(23) + 2(40) + 64.5] = \frac{0.5}{3}[2+22+24+92+80+64.5] = \frac{0.5}{3}(284.5) = 47.41666...
However, we were told to use 5 segments, so n=5, and we need 6 values in Simpson's rule. Therefore, we have two intervals of length 2.5/2 = 1.25 with f(0) = 2, f(1.25) = 16.84375, and f(2.5)=64.
5.
Then Simpson's gives (1.25/3) [2 + 4(16.84375) + 64.5] = (1.25/3) [2 + 67.375 + 64.5] = (1.25/3) [133.875] = 55.78125
Relative error = 55.7812555.7812555.78125=0\frac{|55.78125 - 55.78125|}{55.78125} = 0
f. z=104x2y2z = 10-4x^2-y^2.
zx=8x\frac{\partial z}{\partial x} = -8x and zy=2y\frac{\partial z}{\partial y} = -2y.
At (1,2)(1,2), z=104(1)2(2)2=1044=2z = 10-4(1)^2-(2)^2 = 10-4-4 = 2.
The trace of zz in the xzxz-plane is obtained by setting y=2y=2: z=104x24=64x2z = 10 - 4x^2 - 4 = 6 - 4x^2, dzdx=8x\frac{dz}{dx} = -8x, so at x=1x=1, the slope is 8(1)=8-8(1) = -8.
The trace of zz in the yzyz-plane is obtained by setting x=1x=1: z=104(1)2y2=6y2z = 10 - 4(1)^2 - y^2 = 6 - y^2, dzdy=2y\frac{dz}{dy} = -2y, so at y=2y=2, the slope is 2(2)=4-2(2) = -4.
g. n=1n(1)n4n(x+3)n\sum_{n=1}^\infty \frac{n(-1)^n}{4^n} (x+3)^n.
We use the Ratio Test to find the radius of convergence RR.
limnan+1an=limn(n+1)(1)n+14n+1(x+3)n+1n(1)n4n(x+3)n=limn(n+1)(x+3)4n=x+34limnn+1n=x+34\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = \lim_{n\to\infty} |\frac{\frac{(n+1)(-1)^{n+1}}{4^{n+1}} (x+3)^{n+1}}{\frac{n(-1)^n}{4^n} (x+3)^n}| = \lim_{n\to\infty} |\frac{(n+1)(x+3)}{4n}| = \frac{|x+3|}{4} \lim_{n\to\infty} \frac{n+1}{n} = \frac{|x+3|}{4}.
For convergence, we require x+34<1\frac{|x+3|}{4} < 1, so x+3<4|x+3| < 4. Thus, the radius of convergence R=4R = 4.

3. Final Answer

a. z=12x+14y1+ln(4)z = \frac{1}{2}x + \frac{1}{4}y - 1 + \ln(4)
b. The series is a p-series. It converges if p>1p > 1 and diverges if 0<p10 < p \le 1.
c. 2x2+y2+z2\frac{2}{\sqrt{x^2+y^2+z^2}}
d. n=12nn3+1\sum_{n=1}^\infty \frac{2^n}{n^3+1} diverges.
e. [i] 55.23437555.234375, relative error is approximately 0.9803%0.9803\%. [ii] 55.78125, the relative error is

0. f. The slopes are -8 and -

4. g. 4

Related problems in "Analysis"

The problem asks us to evaluate several integrals and then to perform a partial fraction decompositi...

IntegrationDefinite IntegralsPartial FractionsSubstitutionTrigonometric Functions
2025/4/23

The problem asks us to identify which of the given improper integrals converges. A. $\int_{1}^{\inft...

Improper IntegralsConvergenceDivergenceIntegration Techniques
2025/4/23

The problem asks to differentiate the function $y = \sqrt{4x + 7}$ with respect to $x$.

CalculusDifferentiationChain RuleDerivatives
2025/4/23

We are asked to differentiate the function $y = \sqrt[3]{(ax+b)^2}$ with respect to $x$.

DifferentiationChain RuleDerivativesCalculus
2025/4/23

The problem asks to find the derivative of the function $y = \frac{1}{x}$ with respect to $x$.

DifferentiationPower RuleDerivativesCalculus
2025/4/23

The problem asks to find the derivative of the following two functions: a) $y = x \cdot \sin(2^{x+1}...

DerivativesProduct RuleChain RuleTrigonometric FunctionsExponential Functions
2025/4/22

The problem asks us to find the derivatives of the following two functions: a) $y = x\sin(2x+1)$ b) ...

DerivativesChain RuleProduct RuleTrigonometric FunctionsExponential Functions
2025/4/22

The problem consists of several calculus questions. We are asked to: a. Find the tangent plane to $z...

CalculusMultivariable CalculusTangent PlaneSeries ConvergenceP-SeriesRatio TestLaplacianNumerical IntegrationMid-ordinate RuleSimpson's RuleRelative ErrorPartial DerivativesPower SeriesRadius of Convergence
2025/4/22

Solve the inequality $\cos(\frac{1}{2}\theta - \frac{\pi}{3}) \le \frac{1}{\sqrt{2}}$.

TrigonometryInequalitiesTrigonometric InequalitiesIntervals
2025/4/22

The problem asks us to differentiate the function $y = \sqrt[3]{(ax+b)^2}$ with respect to $x$.

DifferentiationChain RuleDerivativesCalculus
2025/4/22