The problem asks us to identify which of the given improper integrals converges. A. $\int_{1}^{\infty} \frac{1}{\sqrt[3]{x}} dx$ B. $\int_{0}^{1} x^{-5} dx$ C. $\int_{0}^{\infty} \frac{1}{x+3} dx$ D. $\int_{1}^{4} \frac{1}{\sqrt{x-1}} dx$

AnalysisImproper IntegralsConvergenceDivergenceIntegration Techniques
2025/4/23

1. Problem Description

The problem asks us to identify which of the given improper integrals converges.
A. 11x3dx\int_{1}^{\infty} \frac{1}{\sqrt[3]{x}} dx
B. 01x5dx\int_{0}^{1} x^{-5} dx
C. 01x+3dx\int_{0}^{\infty} \frac{1}{x+3} dx
D. 141x1dx\int_{1}^{4} \frac{1}{\sqrt{x-1}} dx

2. Solution Steps

A. 11x3dx=1x1/3dx\int_{1}^{\infty} \frac{1}{\sqrt[3]{x}} dx = \int_{1}^{\infty} x^{-1/3} dx.
Since the exponent 1/3-1/3 is greater than 1-1, this integral diverges. More specifically,
1x1/3dx=limb1bx1/3dx=limb[32x2/3]1b=limb(32b2/332)=\int_{1}^{\infty} x^{-1/3} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-1/3} dx = \lim_{b \to \infty} [\frac{3}{2} x^{2/3}]_{1}^{b} = \lim_{b \to \infty} (\frac{3}{2} b^{2/3} - \frac{3}{2}) = \infty.
B. 01x5dx\int_{0}^{1} x^{-5} dx. Since the upper limit is finite, and the singularity occurs at x=0x=0, we have 01x5dx=lima0+a1x5dx=lima0+[x44]a1=lima0+(14+14a4)=\int_{0}^{1} x^{-5} dx = \lim_{a \to 0^+} \int_{a}^{1} x^{-5} dx = \lim_{a \to 0^+} [\frac{x^{-4}}{-4}]_{a}^{1} = \lim_{a \to 0^+} (-\frac{1}{4} + \frac{1}{4a^4}) = \infty.
The integral diverges.
C. 01x+3dx\int_{0}^{\infty} \frac{1}{x+3} dx.
01x+3dx=limb0b1x+3dx=limb[lnx+3]0b=limb(lnb+3ln3)=\int_{0}^{\infty} \frac{1}{x+3} dx = \lim_{b \to \infty} \int_{0}^{b} \frac{1}{x+3} dx = \lim_{b \to \infty} [\ln|x+3|]_{0}^{b} = \lim_{b \to \infty} (\ln|b+3| - \ln|3|) = \infty.
The integral diverges.
D. 141x1dx\int_{1}^{4} \frac{1}{\sqrt{x-1}} dx. The singularity is at x=1x=1.
141x1dx=lima1+a41x1dx=lima1+[2x1]a4=lima1+(2412a1)=2320=23\int_{1}^{4} \frac{1}{\sqrt{x-1}} dx = \lim_{a \to 1^+} \int_{a}^{4} \frac{1}{\sqrt{x-1}} dx = \lim_{a \to 1^+} [2\sqrt{x-1}]_{a}^{4} = \lim_{a \to 1^+} (2\sqrt{4-1} - 2\sqrt{a-1}) = 2\sqrt{3} - 2\sqrt{0} = 2\sqrt{3}.
This integral converges to 232\sqrt{3}.

3. Final Answer

The integral that will converge is D. 141x1dx\int_{1}^{4} \frac{1}{\sqrt{x-1}} dx.

Related problems in "Analysis"

The problem asks us to evaluate several integrals and then to perform a partial fraction decompositi...

IntegrationDefinite IntegralsPartial FractionsSubstitutionTrigonometric Functions
2025/4/23

The problem asks to differentiate the function $y = \sqrt{4x + 7}$ with respect to $x$.

CalculusDifferentiationChain RuleDerivatives
2025/4/23

We are asked to differentiate the function $y = \sqrt[3]{(ax+b)^2}$ with respect to $x$.

DifferentiationChain RuleDerivativesCalculus
2025/4/23

The problem asks to find the derivative of the function $y = \frac{1}{x}$ with respect to $x$.

DifferentiationPower RuleDerivativesCalculus
2025/4/23

The problem asks to find the derivative of the following two functions: a) $y = x \cdot \sin(2^{x+1}...

DerivativesProduct RuleChain RuleTrigonometric FunctionsExponential Functions
2025/4/22

The problem asks us to find the derivatives of the following two functions: a) $y = x\sin(2x+1)$ b) ...

DerivativesChain RuleProduct RuleTrigonometric FunctionsExponential Functions
2025/4/22

The problem consists of several calculus questions. We are asked to: a. Find the tangent plane to $z...

CalculusMultivariable CalculusTangent PlaneSeries ConvergenceP-SeriesRatio TestLaplacianNumerical IntegrationMid-ordinate RuleSimpson's RuleRelative ErrorPartial DerivativesPower SeriesRadius of Convergence
2025/4/22

Solve the inequality $\cos(\frac{1}{2}\theta - \frac{\pi}{3}) \le \frac{1}{\sqrt{2}}$.

TrigonometryInequalitiesTrigonometric InequalitiesIntervals
2025/4/22

The problem asks us to differentiate the function $y = \sqrt[3]{(ax+b)^2}$ with respect to $x$.

DifferentiationChain RuleDerivativesCalculus
2025/4/22

a. Find the equation of the tangent plane to $z = \ln(2x+y)$ at the point $(1, 2)$. b. Let $\sum_{x=...

Multivariable CalculusPartial DerivativesTangent PlaneInfinite Seriesp-seriesConvergence TestsIntegral Test
2025/4/21