a. Find the equation of the tangent plane to $z = \ln(2x+y)$ at the point $(1, 2)$. b. Let $\sum_{x=1}^{\infty} \frac{1}{x^p}$ be a $p$-series. Show that the series converges if $p > 1$ and diverges if $0 < p \leq 1$.

AnalysisMultivariable CalculusPartial DerivativesTangent PlaneInfinite Seriesp-seriesConvergence TestsIntegral Test
2025/4/21

1. Problem Description

a. Find the equation of the tangent plane to z=ln(2x+y)z = \ln(2x+y) at the point (1,2)(1, 2).
b. Let x=11xp\sum_{x=1}^{\infty} \frac{1}{x^p} be a pp-series. Show that the series converges if p>1p > 1 and diverges if 0<p10 < p \leq 1.

2. Solution Steps

a. To find the equation of the tangent plane to the surface z=f(x,y)z = f(x, y) at the point (x0,y0)(x_0, y_0), we use the formula:
zf(x0,y0)=fx(x0,y0)(xx0)+fy(x0,y0)(yy0)z - f(x_0, y_0) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)
First, we find f(1,2)f(1, 2):
f(1,2)=ln(2(1)+2)=ln(4)f(1, 2) = \ln(2(1) + 2) = \ln(4)
Next, we find the partial derivatives fxf_x and fyf_y:
fx(x,y)=xln(2x+y)=22x+yf_x(x, y) = \frac{\partial}{\partial x} \ln(2x + y) = \frac{2}{2x + y}
fy(x,y)=yln(2x+y)=12x+yf_y(x, y) = \frac{\partial}{\partial y} \ln(2x + y) = \frac{1}{2x + y}
Now, we evaluate the partial derivatives at (1,2)(1, 2):
fx(1,2)=22(1)+2=24=12f_x(1, 2) = \frac{2}{2(1) + 2} = \frac{2}{4} = \frac{1}{2}
fy(1,2)=12(1)+2=14f_y(1, 2) = \frac{1}{2(1) + 2} = \frac{1}{4}
Plugging these values into the tangent plane equation:
zln(4)=12(x1)+14(y2)z - \ln(4) = \frac{1}{2}(x - 1) + \frac{1}{4}(y - 2)
z=12x12+14y12+ln(4)z = \frac{1}{2}x - \frac{1}{2} + \frac{1}{4}y - \frac{1}{2} + \ln(4)
z=12x+14y1+ln(4)z = \frac{1}{2}x + \frac{1}{4}y - 1 + \ln(4)
b. Consider the pp-series n=11np\sum_{n=1}^{\infty} \frac{1}{n^p}.
Case 1: p>1p > 1. We can use the integral test. Consider the integral 11xpdx\int_{1}^{\infty} \frac{1}{x^p} dx.
11xpdx=limt1txpdx=limt[xp+1p+1]1t=limt11p(t1p1)\int_{1}^{\infty} \frac{1}{x^p} dx = \lim_{t \to \infty} \int_{1}^{t} x^{-p} dx = \lim_{t \to \infty} \left[ \frac{x^{-p+1}}{-p+1} \right]_{1}^{t} = \lim_{t \to \infty} \frac{1}{1-p} (t^{1-p} - 1).
Since p>1p > 1, 1p<01 - p < 0, so limtt1p=0\lim_{t \to \infty} t^{1-p} = 0. Therefore, the integral converges to 1p1\frac{1}{p-1}. By the integral test, the series converges for p>1p > 1.
Case 2: 0<p10 < p \leq 1. Again, we can use the integral test.
11xpdx=limt1txpdx=limt[xp+1p+1]1t=limt11p(t1p1)\int_{1}^{\infty} \frac{1}{x^p} dx = \lim_{t \to \infty} \int_{1}^{t} x^{-p} dx = \lim_{t \to \infty} \left[ \frac{x^{-p+1}}{-p+1} \right]_{1}^{t} = \lim_{t \to \infty} \frac{1}{1-p} (t^{1-p} - 1).
If 0<p<10 < p < 1, then 1p>01 - p > 0, so limtt1p=\lim_{t \to \infty} t^{1-p} = \infty. The integral diverges.
If p=1p = 1, the series is n=11n\sum_{n=1}^{\infty} \frac{1}{n}, the harmonic series, which is known to diverge. Alternatively, we can use the integral test: 11xdx=limt[ln(x)]1t=limt(ln(t)ln(1))=\int_{1}^{\infty} \frac{1}{x} dx = \lim_{t \to \infty} [\ln(x)]_{1}^{t} = \lim_{t \to \infty} (\ln(t) - \ln(1)) = \infty. The integral diverges.
By the integral test, the series diverges for 0<p10 < p \leq 1.

3. Final Answer

a. z=12x+14y1+ln(4)z = \frac{1}{2}x + \frac{1}{4}y - 1 + \ln(4)
b. The pp-series x=11xp\sum_{x=1}^{\infty} \frac{1}{x^p} converges if p>1p > 1 and diverges if 0<p10 < p \leq 1.

Related problems in "Analysis"

The problem asks to differentiate the function $y = \sqrt{4x + 7}$ with respect to $x$.

CalculusDifferentiationChain RuleDerivatives
2025/4/23

We are asked to differentiate the function $y = \sqrt[3]{(ax+b)^2}$ with respect to $x$.

DifferentiationChain RuleDerivativesCalculus
2025/4/23

The problem asks to find the derivative of the function $y = \frac{1}{x}$ with respect to $x$.

DifferentiationPower RuleDerivativesCalculus
2025/4/23

The problem asks to find the derivative of the following two functions: a) $y = x \cdot \sin(2^{x+1}...

DerivativesProduct RuleChain RuleTrigonometric FunctionsExponential Functions
2025/4/22

The problem asks us to find the derivatives of the following two functions: a) $y = x\sin(2x+1)$ b) ...

DerivativesChain RuleProduct RuleTrigonometric FunctionsExponential Functions
2025/4/22

The problem consists of several calculus questions. We are asked to: a. Find the tangent plane to $z...

CalculusMultivariable CalculusTangent PlaneSeries ConvergenceP-SeriesRatio TestLaplacianNumerical IntegrationMid-ordinate RuleSimpson's RuleRelative ErrorPartial DerivativesPower SeriesRadius of Convergence
2025/4/22

Solve the inequality $\cos(\frac{1}{2}\theta - \frac{\pi}{3}) \le \frac{1}{\sqrt{2}}$.

TrigonometryInequalitiesTrigonometric InequalitiesIntervals
2025/4/22

The problem asks us to differentiate the function $y = \sqrt[3]{(ax+b)^2}$ with respect to $x$.

DifferentiationChain RuleDerivativesCalculus
2025/4/22

We are asked to solve the following problems: a. Find the equation of the tangent plane to $z = \ln(...

Tangent PlaneSeries ConvergencePartial DerivativesRatio TestIntegrationMidpoint RuleSimpson's RuleRadius of ConvergenceMultivariable Calculus
2025/4/21

The problem asks to differentiate the function $y = (2x+1)^{-1}$.

DifferentiationChain RuleQuotient RuleCalculus
2025/4/20