## 1. 問題の内容代数学式の計算整式分数式2025/4/20##1. 問題の内容画像の問題(7)から(12)を解きます。(7) (4x)3÷(−6x)2(4x)^3 \div (-6x)^2(4x)3÷(−6x)2(8) 34x2÷23x\frac{3}{4}x^2 \div \frac{2}{3}x43x2÷32x(9) 4a×(−9ab)÷6a24a \times (-9ab) \div 6a^24a×(−9ab)÷6a2(10) 3x÷6xy×(−2x)23x \div 6xy \times (-2x)^23x÷6xy×(−2x)2(11) 14x2y×(−3xy2)2÷21x4y14x^2y \times (-3xy^2)^2 \div 21x^4y14x2y×(−3xy2)2÷21x4y(12) −24a÷37a×(−18b)-24a \div \frac{3}{7}a \times (-\frac{1}{8}b)−24a÷73a×(−81b)##2. 解き方の手順(7)(4x)3÷(−6x)2=(4x)3(−6x)2=64x336x2=16x9(4x)^3 \div (-6x)^2 = \frac{(4x)^3}{(-6x)^2} = \frac{64x^3}{36x^2} = \frac{16x}{9}(4x)3÷(−6x)2=(−6x)2(4x)3=36x264x3=916x(8)34x2÷23x=34x2×32x=9x28x=98x\frac{3}{4}x^2 \div \frac{2}{3}x = \frac{3}{4}x^2 \times \frac{3}{2x} = \frac{9x^2}{8x} = \frac{9}{8}x43x2÷32x=43x2×2x3=8x9x2=89x(9)4a×(−9ab)÷6a2=4a×(−9ab)6a2=−36a2b6a2=−6b4a \times (-9ab) \div 6a^2 = \frac{4a \times (-9ab)}{6a^2} = \frac{-36a^2b}{6a^2} = -6b4a×(−9ab)÷6a2=6a24a×(−9ab)=6a2−36a2b=−6b(10)3x÷6xy×(−2x)2=3x6xy×4x2=12x36xy=2x2y3x \div 6xy \times (-2x)^2 = \frac{3x}{6xy} \times 4x^2 = \frac{12x^3}{6xy} = \frac{2x^2}{y}3x÷6xy×(−2x)2=6xy3x×4x2=6xy12x3=y2x2(11)14x2y×(−3xy2)2÷21x4y=14x2y×(9x2y4)÷21x4y=14x2y×9x2y421x4y=126x4y521x4y=6y414x^2y \times (-3xy^2)^2 \div 21x^4y = 14x^2y \times (9x^2y^4) \div 21x^4y = \frac{14x^2y \times 9x^2y^4}{21x^4y} = \frac{126x^4y^5}{21x^4y} = 6y^414x2y×(−3xy2)2÷21x4y=14x2y×(9x2y4)÷21x4y=21x4y14x2y×9x2y4=21x4y126x4y5=6y4(12)−24a÷37a×(−18b)=−24a×73a×(−18b)=−24a×7×(−b)3a×8=168ab24a=7b-24a \div \frac{3}{7}a \times (-\frac{1}{8}b) = -24a \times \frac{7}{3a} \times (-\frac{1}{8}b) = \frac{-24a \times 7 \times (-b)}{3a \times 8} = \frac{168ab}{24a} = 7b−24a÷73a×(−81b)=−24a×3a7×(−81b)=3a×8−24a×7×(−b)=24a168ab=7b##3. 最終的な答え(7) 169x\frac{16}{9}x916x(8) 98x\frac{9}{8}x89x(9) −6b-6b−6b(10) 2x2y\frac{2x^2}{y}y2x2(11) 6y46y^46y4(12) 7b7b7b