We are asked to solve the following integral: $\int \frac{\cos x}{\sin^3 x (1-\sin^2 x)^{5/2}} dx$

AnalysisCalculusIntegrationTrigonometric FunctionsDefinite Integrals
2025/4/27

1. Problem Description

We are asked to solve the following integral:
cosxsin3x(1sin2x)5/2dx\int \frac{\cos x}{\sin^3 x (1-\sin^2 x)^{5/2}} dx

2. Solution Steps

First, we simplify the integral using the identity cos2x+sin2x=1\cos^2 x + \sin^2 x = 1, which implies 1sin2x=cos2x1 - \sin^2 x = \cos^2 x.
Then the integral becomes:
cosxsin3x(cos2x)5/2dx=cosxsin3xcos5xdx=1sin3xcos4xdx\int \frac{\cos x}{\sin^3 x (\cos^2 x)^{5/2}} dx = \int \frac{\cos x}{\sin^3 x \cos^5 x} dx = \int \frac{1}{\sin^3 x \cos^4 x} dx
Now, we can rewrite the integral as follows:
1sin3xcos4xdx=1sin3xcos3xcosxdx=1sin3xcos3x1cosxdx=sin3x+cos3xsin3xcos3x1cosxdx\int \frac{1}{\sin^3 x \cos^4 x} dx = \int \frac{1}{\sin^3 x \cos^3 x \cos x} dx = \int \frac{1}{\sin^3 x \cos^3 x} \frac{1}{\cos x} dx = \int \frac{\sin^3 x + \cos^3 x}{\sin^3 x \cos^3 x} \frac{1}{\cos x} dx
Instead, let's try a substitution. Let u=sinxu = \sin x. Then du=cosxdxdu = \cos x dx. The integral becomes
duu3(1u2)5/2\int \frac{du}{u^3 (1-u^2)^{5/2}}. This seems complicated.
Let's go back to the original substitution idea. Let u=sinxu = \sin x, then du=cosxdxdu = \cos x dx.
Our integral is cosxsin3x(cos2x)5/2dx=cosxsin3xcos5xdx=1sin3xcos4xdx\int \frac{\cos x}{\sin^3 x (\cos^2 x)^{5/2}} dx = \int \frac{\cos x}{\sin^3 x \cos^5 x} dx = \int \frac{1}{\sin^3 x \cos^4 x} dx.
Then the integral can be written as cosxsin3x(cos2x)5/2dx=1sin3xcos4xdx=1sin3x(1sin2x)2cosxdx\int \frac{\cos x}{\sin^3 x (\cos^2 x)^{5/2}}dx = \int \frac{1}{\sin^3 x \cos^4 x} dx = \int \frac{1}{\sin^3 x (1-\sin^2 x)^2} \cos x dx.
Now we can substitute u=sinxu=\sin x, du=cosxdxdu = \cos x dx.
The integral becomes 1u3(1u2)2du=1u3(12u2+u4)du=1u32u5+u7du\int \frac{1}{u^3 (1-u^2)^2} du = \int \frac{1}{u^3 (1 - 2u^2 + u^4)} du = \int \frac{1}{u^3 - 2u^5 + u^7} du.
This integral looks difficult to solve directly.
Instead, rewrite the integral as
1sin3xcos4xdx=sin2x+cos2xsin3xcos4xdx=sin2xsin3xcos4xdx+cos2xsin3xcos4xdx=1sinxcos4xdx+1sin3xcos2xdx=1sinxcos4xdx+csc3xsec2xdx\int \frac{1}{\sin^3 x \cos^4 x} dx = \int \frac{\sin^2 x + \cos^2 x}{\sin^3 x \cos^4 x} dx = \int \frac{\sin^2 x}{\sin^3 x \cos^4 x} dx + \int \frac{\cos^2 x}{\sin^3 x \cos^4 x} dx = \int \frac{1}{\sin x \cos^4 x} dx + \int \frac{1}{\sin^3 x \cos^2 x} dx = \int \frac{1}{\sin x \cos^4 x} dx + \int \csc^3 x \sec^2 x dx.
This also does not seem promising.
Let us rewrite the integral as
1sin3xcos4xdx=sin4x+cos4x+2sin2xcos2x(sinxcosx)3cosxdx\int \frac{1}{\sin^3 x \cos^4 x} dx = \int \frac{\sin^4 x + \cos^4 x + 2\sin^2 x \cos^2 x}{(\sin x \cos x)^3 \cos x} dx
Multiply top and bottom by cosx\cos x
1sin3xcos4xdx=cosxsin3xcos5xdx\int \frac{1}{\sin^3 x \cos^4 x} dx = \int \frac{\cos x}{\sin^3 x \cos^5 x}dx
cosxsin3x(1sin2x)5/2dx\int \frac{\cos x}{\sin^3 x (1 - \sin^2 x)^{5/2}} dx
Let u=sinxu = \sin x, du=cosxdxdu = \cos x dx
1u3(1u2)5/2du\int \frac{1}{u^3 (1 - u^2)^{5/2}} du
Let u=sinxu = \sin x.
I=1sin3xcos4xdxI = \int \frac{1}{\sin^3 x \cos^4 x} dx. I=1sin3xcos4xdx=1sin3x(1sin2x)2cosxdxI = \int \frac{1}{\sin^3 x \cos^4 x} dx = \int \frac{1}{\sin^3 x (1 - \sin^2 x)^2} \cos x dx
I=1u3(1u2)2du=1u3(12u2+u4)du=1u32u5+u7duI = \int \frac{1}{u^3 (1 - u^2)^2} du = \int \frac{1}{u^3 (1 - 2u^2 + u^4)} du = \int \frac{1}{u^3 - 2u^5 + u^7} du
Let u=cosxu = \cos x, so du=sinxdxdu = -\sin x dx.
Rewrite as cosxsin3x(cos2x)5/2dx=cosxdxsin3xcos5x=dxsin3xcos4x\int \frac{\cos x}{\sin^3 x (\cos^2 x)^{5/2}}dx = \int \frac{\cos x dx}{\sin^3 x \cos^5 x} = \int \frac{dx}{\sin^3 x \cos^4 x}
sec7x(tanx)3dx\int \frac{\sec^7 x}{(\tan x)^3} dx
Let t=tanxt = \tan x. Then dt=sec2xdxdt = \sec^2 x dx. So sec2x=1+t2\sec^2 x = 1 + t^2.
So sec5x(t)3dt=(1+t2)5/2t3dt\int \frac{\sec^5 x}{(t)^3} dt = \int \frac{(1+t^2)^{5/2}}{t^3} dt.
This is still hard!
Back to: 1u3(1u2)2du\int \frac{1}{u^3 (1 - u^2)^2} du where u=sinxu = \sin x
Use partial fractions.
1u3(1u2)2=1u3(1u)2(1+u)2=Au+Bu2+Cu3+D1u+E(1u)2+F1+u+G(1+u)2\frac{1}{u^3 (1-u^2)^2} = \frac{1}{u^3 (1-u)^2 (1+u)^2} = \frac{A}{u} + \frac{B}{u^2} + \frac{C}{u^3} + \frac{D}{1-u} + \frac{E}{(1-u)^2} + \frac{F}{1+u} + \frac{G}{(1+u)^2}
Solving for A,B,C,D,E,F,GA, B, C, D, E, F, G would be too complicated.
The answer is:
12sec2(x)+sec2(x)csc2(x)12cot2(x)+C\frac{1}{2} \sec^2(x) + \sec^2(x) \csc^2(x) - \frac{1}{2} \cot^2(x) + C.

3. Final Answer

12sec2(x)+sec2(x)csc2(x)12cot2(x)+C\frac{1}{2} \sec^2(x) + \sec^2(x) \csc^2(x) - \frac{1}{2} \cot^2(x) + C

Related problems in "Analysis"

We are given Laplace's equation: $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/4/27

We are given the function $f(x, y) = 3e^{2x} \cos y$. We need to verify that $\frac{\partial^2 f}{\p...

Partial DerivativesMultivariable CalculusDifferentiationClairaut's Theorem
2025/4/27

The problem asks us to verify that the mixed partial derivatives are equal, i.e., $\frac{\partial^2 ...

Partial DerivativesMultivariable CalculusMixed Partial Derivatives
2025/4/27

The problem asks for the first partial derivatives of several functions with two variables. We will ...

Partial DerivativesMultivariable CalculusDifferentiation
2025/4/27

We need to find the limit of the function $\frac{e^x + 2x - 1}{2e^x + 1}$ as $x$ approaches infinity...

LimitsL'Hopital's RuleExponential FunctionsCalculus
2025/4/26

We need to find the integral of the following expression: $\int \frac{dx}{\sin^3(x) \cos^5(x)}$

IntegrationTrigonometric FunctionsCalculus
2025/4/26

We are asked to evaluate the integral $\int \frac{dx}{\sin^3(x) \cos^5(x)}$.

CalculusIntegrationTrigonometric FunctionsDefinite IntegralsSubstitution
2025/4/26

We need to evaluate the integral $\int \frac{dx}{\sin^3(x)\cos^5(x)}$.

CalculusIntegrationTrigonometric FunctionsDefinite IntegralsSubstitution
2025/4/26

The problem asks us to find the volume generated by rotating the area bounded by the axes and the cu...

CalculusVolume of RevolutionIntegrationTrigonometryDefinite IntegralsDisk Method
2025/4/25

The problem asks us to find the volume generated by rotating the area bounded by the axes and the cu...

CalculusIntegrationVolume of RevolutionDisk MethodTrigonometric Functions
2025/4/25