First, we simplify the integral using the identity cos2x+sin2x=1, which implies 1−sin2x=cos2x. Then the integral becomes:
∫sin3x(cos2x)5/2cosxdx=∫sin3xcos5xcosxdx=∫sin3xcos4x1dx Now, we can rewrite the integral as follows:
∫sin3xcos4x1dx=∫sin3xcos3xcosx1dx=∫sin3xcos3x1cosx1dx=∫sin3xcos3xsin3x+cos3xcosx1dx Instead, let's try a substitution. Let u=sinx. Then du=cosxdx. The integral becomes ∫u3(1−u2)5/2du. This seems complicated. Let's go back to the original substitution idea. Let u=sinx, then du=cosxdx. Our integral is ∫sin3x(cos2x)5/2cosxdx=∫sin3xcos5xcosxdx=∫sin3xcos4x1dx. Then the integral can be written as ∫sin3x(cos2x)5/2cosxdx=∫sin3xcos4x1dx=∫sin3x(1−sin2x)21cosxdx. Now we can substitute u=sinx, du=cosxdx. The integral becomes ∫u3(1−u2)21du=∫u3(1−2u2+u4)1du=∫u3−2u5+u71du. This integral looks difficult to solve directly.
Instead, rewrite the integral as
∫sin3xcos4x1dx=∫sin3xcos4xsin2x+cos2xdx=∫sin3xcos4xsin2xdx+∫sin3xcos4xcos2xdx=∫sinxcos4x1dx+∫sin3xcos2x1dx=∫sinxcos4x1dx+∫csc3xsec2xdx. This also does not seem promising.
Let us rewrite the integral as
∫sin3xcos4x1dx=∫(sinxcosx)3cosxsin4x+cos4x+2sin2xcos2xdx Multiply top and bottom by cosx ∫sin3xcos4x1dx=∫sin3xcos5xcosxdx ∫sin3x(1−sin2x)5/2cosxdx Let u=sinx, du=cosxdx ∫u3(1−u2)5/21du Let u=sinx. I=∫sin3xcos4x1dx. I=∫sin3xcos4x1dx=∫sin3x(1−sin2x)21cosxdx I=∫u3(1−u2)21du=∫u3(1−2u2+u4)1du=∫u3−2u5+u71du Let u=cosx, so du=−sinxdx. Rewrite as ∫sin3x(cos2x)5/2cosxdx=∫sin3xcos5xcosxdx=∫sin3xcos4xdx ∫(tanx)3sec7xdx Let t=tanx. Then dt=sec2xdx. So sec2x=1+t2. So ∫(t)3sec5xdt=∫t3(1+t2)5/2dt. This is still hard!
Back to: ∫u3(1−u2)21du where u=sinx Use partial fractions.
u3(1−u2)21=u3(1−u)2(1+u)21=uA+u2B+u3C+1−uD+(1−u)2E+1+uF+(1+u)2G Solving for A,B,C,D,E,F,G would be too complicated. The answer is:
21sec2(x)+sec2(x)csc2(x)−21cot2(x)+C.