We are asked to evaluate the integral $\int \frac{dx}{\sin^3(x) \cos^5(x)}$.

AnalysisCalculusIntegrationTrigonometric FunctionsDefinite IntegralsSubstitution
2025/4/26

1. Problem Description

We are asked to evaluate the integral dxsin3(x)cos5(x)\int \frac{dx}{\sin^3(x) \cos^5(x)}.

2. Solution Steps

We can rewrite the integral using the identity sin2(x)+cos2(x)=1\sin^2(x) + \cos^2(x) = 1:
dxsin3(x)cos5(x)=sin2(x)+cos2(x)sin3(x)cos5(x)dx=sin2(x)sin3(x)cos5(x)dx+cos2(x)sin3(x)cos5(x)dx\int \frac{dx}{\sin^3(x) \cos^5(x)} = \int \frac{\sin^2(x) + \cos^2(x)}{\sin^3(x) \cos^5(x)} dx = \int \frac{\sin^2(x)}{\sin^3(x) \cos^5(x)} dx + \int \frac{\cos^2(x)}{\sin^3(x) \cos^5(x)} dx
=1sin(x)cos5(x)dx+1sin3(x)cos3(x)dx= \int \frac{1}{\sin(x) \cos^5(x)} dx + \int \frac{1}{\sin^3(x) \cos^3(x)} dx
=1sin(x)cos5(x)dx+sin2(x)+cos2(x)sin3(x)cos3(x)dx= \int \frac{1}{\sin(x) \cos^5(x)} dx + \int \frac{\sin^2(x) + \cos^2(x)}{\sin^3(x) \cos^3(x)} dx
=1sin(x)cos5(x)dx+sin2(x)sin3(x)cos3(x)dx+cos2(x)sin3(x)cos3(x)dx= \int \frac{1}{\sin(x) \cos^5(x)} dx + \int \frac{\sin^2(x)}{\sin^3(x) \cos^3(x)} dx + \int \frac{\cos^2(x)}{\sin^3(x) \cos^3(x)} dx
=1sin(x)cos5(x)dx+1sin(x)cos3(x)dx+1sin3(x)cos(x)dx= \int \frac{1}{\sin(x) \cos^5(x)} dx + \int \frac{1}{\sin(x) \cos^3(x)} dx + \int \frac{1}{\sin^3(x) \cos(x)} dx
We can write
dxsin3(x)cos5(x)=1sin3(x)cos5(x)dx=1sin3(x)cos3(x)cos8(x)dx=sec8(x)tan3(x)dx\int \frac{dx}{\sin^3(x)\cos^5(x)} = \int \frac{1}{\sin^3(x)\cos^5(x)}dx = \int \frac{1}{\frac{\sin^3(x)}{\cos^3(x)} \cos^8(x)} dx = \int \frac{\sec^8(x)}{\tan^3(x)} dx.
Let u=tan(x)u = \tan(x), then du=sec2(x)dxdu = \sec^2(x) dx.
We have sec2(x)=1+tan2(x)\sec^2(x) = 1 + \tan^2(x), so sec8(x)=(sec2(x))4=(1+tan2(x))4=(1+u2)4\sec^8(x) = (\sec^2(x))^4 = (1+\tan^2(x))^4 = (1+u^2)^4.
Then the integral becomes
(1+u2)4u3du=1+4u2+6u4+4u6+u8u3du=(u3+4u1+6u+4u3+u5)du\int \frac{(1+u^2)^4}{u^3} du = \int \frac{1+4u^2+6u^4+4u^6+u^8}{u^3} du = \int (u^{-3} + 4u^{-1} + 6u + 4u^3 + u^5) du.
=u22+4lnu+6u22+4u44+u66+C=12u2+4lnu+3u2+u4+u66+C= \frac{u^{-2}}{-2} + 4\ln|u| + \frac{6u^2}{2} + \frac{4u^4}{4} + \frac{u^6}{6} + C = -\frac{1}{2u^2} + 4\ln|u| + 3u^2 + u^4 + \frac{u^6}{6} + C.
=12tan2(x)+4lntan(x)+3tan2(x)+tan4(x)+tan6(x)6+C= -\frac{1}{2\tan^2(x)} + 4\ln|\tan(x)| + 3\tan^2(x) + \tan^4(x) + \frac{\tan^6(x)}{6} + C.
Alternatively, we can rewrite the integral as:
dxsin3(x)cos5(x)=sin5(x)+cos5(x)sin3(x)cos5(x)dx=sin5(x)sin3(x)cos5(x)dx+cos5(x)sin3(x)cos5(x)dx\int \frac{dx}{\sin^3(x) \cos^5(x)} = \int \frac{\sin^5(x) + \cos^5(x)}{\sin^3(x) \cos^5(x)} dx = \int \frac{\sin^5(x)}{\sin^3(x)\cos^5(x)} dx + \int \frac{\cos^5(x)}{\sin^3(x)\cos^5(x)} dx
=sin2(x)cos5(x)dx+1sin3(x)dx= \int \frac{\sin^2(x)}{\cos^5(x)} dx + \int \frac{1}{\sin^3(x)} dx
The problem is still complicated.
Another way is to use the identity 1=cos2(x)+sin2(x)1 = \cos^2(x) + \sin^2(x). Then 1=(cos2(x)+sin2(x))3=cos6(x)+3cos4(x)sin2(x)+3cos2(x)sin4(x)+sin6(x)1 = (\cos^2(x) + \sin^2(x))^3 = \cos^6(x) + 3\cos^4(x)\sin^2(x) + 3\cos^2(x)\sin^4(x) + \sin^6(x).
Also 1=(cos2(x)+sin2(x))4=cos8(x)+4cos6(x)sin2(x)+6cos4(x)sin4(x)+4cos2(x)sin6(x)+sin8(x)1 = (\cos^2(x) + \sin^2(x))^4 = \cos^8(x) + 4\cos^6(x)\sin^2(x) + 6\cos^4(x)\sin^4(x) + 4\cos^2(x)\sin^6(x) + \sin^8(x).
We can write
dxsin3(x)cos5(x)=(cos2(x)+sin2(x))3dxsin3(x)cos5(x)=(cos2(x)+sin2(x))4dxsin3(x)cos5(x)\int \frac{dx}{\sin^3(x) \cos^5(x)} = \int \frac{(\cos^2(x)+\sin^2(x))^3 dx}{\sin^3(x) \cos^5(x)} = \int \frac{(\cos^2(x)+\sin^2(x))^4 dx}{\sin^3(x) \cos^5(x)}
Let's go back to sec8(x)tan3(x)dx\int \frac{\sec^8(x)}{\tan^3(x)} dx.
sec8(x)tan3(x)dx=sec6(x)sec2(x)tan3(x)dx=(1+tan2(x))3sec2(x)tan3(x)dx\int \frac{\sec^8(x)}{\tan^3(x)} dx = \int \frac{\sec^6(x) \sec^2(x)}{\tan^3(x)} dx = \int \frac{(1+\tan^2(x))^3 \sec^2(x)}{\tan^3(x)} dx.
Using u=tan(x)u = \tan(x), we have (1+u2)3u3du=1+3u2+3u4+u6u3du=(u3+3u1+3u+u3)du\int \frac{(1+u^2)^3}{u^3} du = \int \frac{1+3u^2+3u^4+u^6}{u^3} du = \int (u^{-3} + 3u^{-1} + 3u + u^3) du
=u22+3lnu+3u22+u44+C=12tan2(x)+3lntan(x)+3tan2(x)2+tan4(x)4+C= \frac{u^{-2}}{-2} + 3\ln|u| + \frac{3u^2}{2} + \frac{u^4}{4} + C = -\frac{1}{2\tan^2(x)} + 3\ln|\tan(x)| + \frac{3\tan^2(x)}{2} + \frac{\tan^4(x)}{4} + C.

3. Final Answer

12tan2(x)+3lntan(x)+3tan2(x)2+tan4(x)4+C-\frac{1}{2\tan^2(x)} + 3\ln|\tan(x)| + \frac{3\tan^2(x)}{2} + \frac{\tan^4(x)}{4} + C

Related problems in "Analysis"

The problem is to evaluate the indefinite integral of the function $\sqrt{x} - \frac{1}{2}x + \frac{...

IntegrationIndefinite IntegralPower RuleCalculus
2025/4/27

We are asked to solve two integration problems. First, we need to evaluate $\int (2\sqrt{x} + 5x^{-1...

IntegrationDefinite IntegralsIndefinite IntegralsPower RuleExponential FunctionsLogarithmic Functions
2025/4/27

We are asked to solve the following integral: $\int \frac{\cos x}{\sin^3 x (1-\sin^2 x)^{5/2}} dx$

CalculusIntegrationTrigonometric FunctionsDefinite Integrals
2025/4/27

We are given Laplace's equation: $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/4/27

We are given the function $f(x, y) = 3e^{2x} \cos y$. We need to verify that $\frac{\partial^2 f}{\p...

Partial DerivativesMultivariable CalculusDifferentiationClairaut's Theorem
2025/4/27

The problem asks us to verify that the mixed partial derivatives are equal, i.e., $\frac{\partial^2 ...

Partial DerivativesMultivariable CalculusMixed Partial Derivatives
2025/4/27

The problem asks for the first partial derivatives of several functions with two variables. We will ...

Partial DerivativesMultivariable CalculusDifferentiation
2025/4/27

We need to find the limit of the function $\frac{e^x + 2x - 1}{2e^x + 1}$ as $x$ approaches infinity...

LimitsL'Hopital's RuleExponential FunctionsCalculus
2025/4/26

We need to find the integral of the following expression: $\int \frac{dx}{\sin^3(x) \cos^5(x)}$

IntegrationTrigonometric FunctionsCalculus
2025/4/26

We need to evaluate the integral $\int \frac{dx}{\sin^3(x)\cos^5(x)}$.

CalculusIntegrationTrigonometric FunctionsDefinite IntegralsSubstitution
2025/4/26