We can rewrite the integral using the identity sin2(x)+cos2(x)=1: ∫sin3(x)cos5(x)dx=∫sin3(x)cos5(x)sin2(x)+cos2(x)dx=∫sin3(x)cos5(x)sin2(x)dx+∫sin3(x)cos5(x)cos2(x)dx =∫sin(x)cos5(x)1dx+∫sin3(x)cos3(x)1dx =∫sin(x)cos5(x)1dx+∫sin3(x)cos3(x)sin2(x)+cos2(x)dx =∫sin(x)cos5(x)1dx+∫sin3(x)cos3(x)sin2(x)dx+∫sin3(x)cos3(x)cos2(x)dx =∫sin(x)cos5(x)1dx+∫sin(x)cos3(x)1dx+∫sin3(x)cos(x)1dx We can write
∫sin3(x)cos5(x)dx=∫sin3(x)cos5(x)1dx=∫cos3(x)sin3(x)cos8(x)1dx=∫tan3(x)sec8(x)dx. Let u=tan(x), then du=sec2(x)dx. We have sec2(x)=1+tan2(x), so sec8(x)=(sec2(x))4=(1+tan2(x))4=(1+u2)4. Then the integral becomes
∫u3(1+u2)4du=∫u31+4u2+6u4+4u6+u8du=∫(u−3+4u−1+6u+4u3+u5)du. =−2u−2+4ln∣u∣+26u2+44u4+6u6+C=−2u21+4ln∣u∣+3u2+u4+6u6+C. =−2tan2(x)1+4ln∣tan(x)∣+3tan2(x)+tan4(x)+6tan6(x)+C. Alternatively, we can rewrite the integral as:
∫sin3(x)cos5(x)dx=∫sin3(x)cos5(x)sin5(x)+cos5(x)dx=∫sin3(x)cos5(x)sin5(x)dx+∫sin3(x)cos5(x)cos5(x)dx =∫cos5(x)sin2(x)dx+∫sin3(x)1dx The problem is still complicated.
Another way is to use the identity 1=cos2(x)+sin2(x). Then 1=(cos2(x)+sin2(x))3=cos6(x)+3cos4(x)sin2(x)+3cos2(x)sin4(x)+sin6(x). Also 1=(cos2(x)+sin2(x))4=cos8(x)+4cos6(x)sin2(x)+6cos4(x)sin4(x)+4cos2(x)sin6(x)+sin8(x). We can write
∫sin3(x)cos5(x)dx=∫sin3(x)cos5(x)(cos2(x)+sin2(x))3dx=∫sin3(x)cos5(x)(cos2(x)+sin2(x))4dx Let's go back to ∫tan3(x)sec8(x)dx. ∫tan3(x)sec8(x)dx=∫tan3(x)sec6(x)sec2(x)dx=∫tan3(x)(1+tan2(x))3sec2(x)dx. Using u=tan(x), we have ∫u3(1+u2)3du=∫u31+3u2+3u4+u6du=∫(u−3+3u−1+3u+u3)du =−2u−2+3ln∣u∣+23u2+4u4+C=−2tan2(x)1+3ln∣tan(x)∣+23tan2(x)+4tan4(x)+C.