We can rewrite the integral as follows:
∫sin3(x)cos5(x)dx=∫sin3(x)cos5(x)1dx We can rewrite 1 as (sin2(x)+cos2(x))n for any n. Let's rewrite the integral as:
∫sin3(x)cos5(x)sin2(x)+cos2(x)dx=∫sin3(x)cos5(x)sin2(x)dx+∫sin3(x)cos5(x)cos2(x)dx =∫sin(x)cos5(x)1dx+∫sin3(x)cos3(x)1dx =∫sin(x)cos5(x)1dx+∫sin3(x)cos3(x)sin2(x)+cos2(x)dx =∫sin(x)cos5(x)1dx+∫sin3(x)cos3(x)sin2(x)dx+∫sin3(x)cos3(x)cos2(x)dx =∫sin(x)cos5(x)1dx+∫sin(x)cos3(x)1dx+∫sin3(x)cos(x)1dx Let us rewrite the original integral as:
∫sin3(x)cos5(x)dx=∫sin3(x)cos5(x)1dx =∫sin3(x)cos3(x)cos2(x)1dx=∫sin3(x)cos3(x)1sec2(x)dx =∫sin3(x)cos3(x)cos2(x)+sin2(x)sec2(x)dx=∫sin3(x)cos3(x)cos2(x)sec2(x)dx+∫sin3(x)cos3(x)sin2(x)sec2(x)dx =∫sin3(x)cos(x)1dx+∫sin(x)cos5(x)1dx =∫sin3(x)cos(x)1dx+∫sin(x)cos5(x)1dx We have ∫sin3(x)cos5(x)dx=∫sin3(x)cos5(x)dx⋅1cos2(x)+sin2(x)=∫sin3(x)cos5(x)sin2(x)+cos2(x)dx=∫sin3(x)cos5(x)sin2(x)+sin3(x)cos5(x)cos2(x)dx=∫sin(x)cos5(x)dx+∫sin3(x)cos3(x)dx Now, consider ∫sin3(x)cos5(x)dx=∫sin3(x)cos5(x)sin2(x)+cos2(x)dx=∫sin(x)cos5(x)1dx+∫sin3(x)cos3(x)1dx ∫sin3(x)cos5(x)dx=∫sin3(x)cos5(x)1dx=∫cos3(x)sin3(x)cos8(x)1dx=∫tan3(x)sec8(x)dx=∫tan3(x)sec6(x)sec2(x)dx Now let u=tan(x), so du=sec2(x)dx. Also sec2(x)=1+tan2(x)=1+u2 So sec6(x)=(1+u2)3=1+3u2+3u4+u6 Thus we have ∫u31+3u2+3u4+u6du=∫(u31+u3+3u+u3)du =2u2−1+3ln∣u∣+23u2+4u4+C =2tan2(x)−1+3ln∣tan(x)∣+23tan2(x)+4tan4(x)+C