We need to find the integral of the following expression: $\int \frac{dx}{\sin^3(x) \cos^5(x)}$

AnalysisIntegrationTrigonometric FunctionsCalculus
2025/4/26

1. Problem Description

We need to find the integral of the following expression:
dxsin3(x)cos5(x)\int \frac{dx}{\sin^3(x) \cos^5(x)}

2. Solution Steps

We can rewrite the integral as follows:
dxsin3(x)cos5(x)=1sin3(x)cos5(x)dx\int \frac{dx}{\sin^3(x) \cos^5(x)} = \int \frac{1}{\sin^3(x) \cos^5(x)} dx
We can rewrite 11 as (sin2(x)+cos2(x))n(\sin^2(x) + \cos^2(x))^n for any nn.
Let's rewrite the integral as:
sin2(x)+cos2(x)sin3(x)cos5(x)dx=sin2(x)sin3(x)cos5(x)dx+cos2(x)sin3(x)cos5(x)dx\int \frac{\sin^2(x) + \cos^2(x)}{\sin^3(x) \cos^5(x)} dx = \int \frac{\sin^2(x)}{\sin^3(x) \cos^5(x)} dx + \int \frac{\cos^2(x)}{\sin^3(x) \cos^5(x)} dx
=1sin(x)cos5(x)dx+1sin3(x)cos3(x)dx= \int \frac{1}{\sin(x) \cos^5(x)} dx + \int \frac{1}{\sin^3(x) \cos^3(x)} dx
=1sin(x)cos5(x)dx+sin2(x)+cos2(x)sin3(x)cos3(x)dx= \int \frac{1}{\sin(x) \cos^5(x)} dx + \int \frac{\sin^2(x) + \cos^2(x)}{\sin^3(x) \cos^3(x)} dx
=1sin(x)cos5(x)dx+sin2(x)sin3(x)cos3(x)dx+cos2(x)sin3(x)cos3(x)dx= \int \frac{1}{\sin(x) \cos^5(x)} dx + \int \frac{\sin^2(x)}{\sin^3(x) \cos^3(x)} dx + \int \frac{\cos^2(x)}{\sin^3(x) \cos^3(x)} dx
=1sin(x)cos5(x)dx+1sin(x)cos3(x)dx+1sin3(x)cos(x)dx= \int \frac{1}{\sin(x) \cos^5(x)} dx + \int \frac{1}{\sin(x) \cos^3(x)} dx + \int \frac{1}{\sin^3(x) \cos(x)} dx
Let us rewrite the original integral as:
dxsin3(x)cos5(x)=1sin3(x)cos5(x)dx\int \frac{dx}{\sin^3(x) \cos^5(x)} = \int \frac{1}{\sin^3(x) \cos^5(x)} dx
=1sin3(x)cos3(x)cos2(x)dx=1sin3(x)cos3(x)sec2(x)dx= \int \frac{1}{\sin^3(x) \cos^3(x) \cos^2(x)} dx = \int \frac{1}{\sin^3(x) \cos^3(x)} \sec^2(x) dx
=cos2(x)+sin2(x)sin3(x)cos3(x)sec2(x)dx=cos2(x)sec2(x)sin3(x)cos3(x)dx+sin2(x)sec2(x)sin3(x)cos3(x)dx= \int \frac{\cos^2(x) + \sin^2(x)}{\sin^3(x) \cos^3(x)} \sec^2(x) dx = \int \frac{\cos^2(x) \sec^2(x)}{\sin^3(x) \cos^3(x)} dx + \int \frac{\sin^2(x) \sec^2(x)}{\sin^3(x) \cos^3(x)} dx
=1sin3(x)cos(x)dx+1sin(x)cos5(x)dx= \int \frac{1}{\sin^3(x) \cos(x)} dx + \int \frac{1}{\sin(x) \cos^5(x)} dx
=1sin3(x)cos(x)dx+1sin(x)cos5(x)dx= \int \frac{1}{\sin^3(x) \cos(x)} dx + \int \frac{1}{\sin(x) \cos^5(x)} dx
We have dxsin3(x)cos5(x)=dxsin3(x)cos5(x)cos2(x)+sin2(x)1=sin2(x)+cos2(x)sin3(x)cos5(x)dx=sin2(x)sin3(x)cos5(x)+cos2(x)sin3(x)cos5(x)dx=dxsin(x)cos5(x)+dxsin3(x)cos3(x)\int \frac{dx}{\sin^3(x) \cos^5(x)} = \int \frac{dx}{\sin^3(x) \cos^5(x)} \cdot \frac{\cos^2(x) + \sin^2(x)}{1} = \int \frac{\sin^2(x) + \cos^2(x)}{\sin^3(x) \cos^5(x)}dx = \int \frac{\sin^2(x)}{\sin^3(x) \cos^5(x)} + \frac{\cos^2(x)}{\sin^3(x) \cos^5(x)}dx = \int \frac{dx}{\sin(x)\cos^5(x)} + \int \frac{dx}{\sin^3(x)\cos^3(x)}
Now, consider dxsin3(x)cos5(x)=sin2(x)+cos2(x)sin3(x)cos5(x)dx=1sin(x)cos5(x)dx+1sin3(x)cos3(x)dx\int \frac{dx}{\sin^3(x)\cos^5(x)} = \int \frac{\sin^2(x) + \cos^2(x)}{\sin^3(x)\cos^5(x)}dx = \int \frac{1}{\sin(x)\cos^5(x)}dx + \int \frac{1}{\sin^3(x)\cos^3(x)}dx
dxsin3(x)cos5(x)=1sin3(x)cos5(x)dx=1sin3(x)cos3(x)cos8(x)dx=sec8(x)tan3(x)dx=sec6(x)tan3(x)sec2(x)dx\int \frac{dx}{\sin^3(x) \cos^5(x)} = \int \frac{1}{\sin^3(x) \cos^5(x)} dx = \int \frac{1}{\frac{\sin^3(x)}{\cos^3(x)} \cos^8(x)} dx = \int \frac{\sec^8(x)}{\tan^3(x)} dx = \int \frac{\sec^6(x)}{\tan^3(x)} \sec^2(x) dx
Now let u=tan(x)u = \tan(x), so du=sec2(x)dxdu = \sec^2(x) dx. Also sec2(x)=1+tan2(x)=1+u2\sec^2(x) = 1 + \tan^2(x) = 1 + u^2
So sec6(x)=(1+u2)3=1+3u2+3u4+u6\sec^6(x) = (1 + u^2)^3 = 1 + 3u^2 + 3u^4 + u^6
Thus we have 1+3u2+3u4+u6u3du=(1u3+3u+3u+u3)du\int \frac{1 + 3u^2 + 3u^4 + u^6}{u^3} du = \int (\frac{1}{u^3} + \frac{3}{u} + 3u + u^3) du
=12u2+3lnu+3u22+u44+C= \frac{-1}{2u^2} + 3\ln|u| + \frac{3u^2}{2} + \frac{u^4}{4} + C
=12tan2(x)+3lntan(x)+3tan2(x)2+tan4(x)4+C= \frac{-1}{2\tan^2(x)} + 3\ln|\tan(x)| + \frac{3\tan^2(x)}{2} + \frac{\tan^4(x)}{4} + C

3. Final Answer

tan4(x)4+3tan2(x)2+3lntan(x)12tan2(x)+C\frac{\tan^4(x)}{4} + \frac{3\tan^2(x)}{2} + 3\ln|\tan(x)| - \frac{1}{2\tan^2(x)} + C

Related problems in "Analysis"

The problem is to evaluate the indefinite integral of the function $\sqrt{x} - \frac{1}{2}x + \frac{...

IntegrationIndefinite IntegralPower RuleCalculus
2025/4/27

We are asked to solve two integration problems. First, we need to evaluate $\int (2\sqrt{x} + 5x^{-1...

IntegrationDefinite IntegralsIndefinite IntegralsPower RuleExponential FunctionsLogarithmic Functions
2025/4/27

We are asked to solve the following integral: $\int \frac{\cos x}{\sin^3 x (1-\sin^2 x)^{5/2}} dx$

CalculusIntegrationTrigonometric FunctionsDefinite Integrals
2025/4/27

We are given Laplace's equation: $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/4/27

We are given the function $f(x, y) = 3e^{2x} \cos y$. We need to verify that $\frac{\partial^2 f}{\p...

Partial DerivativesMultivariable CalculusDifferentiationClairaut's Theorem
2025/4/27

The problem asks us to verify that the mixed partial derivatives are equal, i.e., $\frac{\partial^2 ...

Partial DerivativesMultivariable CalculusMixed Partial Derivatives
2025/4/27

The problem asks for the first partial derivatives of several functions with two variables. We will ...

Partial DerivativesMultivariable CalculusDifferentiation
2025/4/27

We need to find the limit of the function $\frac{e^x + 2x - 1}{2e^x + 1}$ as $x$ approaches infinity...

LimitsL'Hopital's RuleExponential FunctionsCalculus
2025/4/26

We are asked to evaluate the integral $\int \frac{dx}{\sin^3(x) \cos^5(x)}$.

CalculusIntegrationTrigonometric FunctionsDefinite IntegralsSubstitution
2025/4/26

We need to evaluate the integral $\int \frac{dx}{\sin^3(x)\cos^5(x)}$.

CalculusIntegrationTrigonometric FunctionsDefinite IntegralsSubstitution
2025/4/26