We are given the function $f(x, y) = 3e^{2x} \cos y$. We need to verify that $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$.

AnalysisPartial DerivativesMultivariable CalculusDifferentiationClairaut's Theorem
2025/4/27

1. Problem Description

We are given the function f(x,y)=3e2xcosyf(x, y) = 3e^{2x} \cos y. We need to verify that 2fyx=2fxy\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}.

2. Solution Steps

First, we find the first partial derivatives:
fx=x(3e2xcosy)=3cosyx(e2x)=3cosy(2e2x)=6e2xcosy\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} (3e^{2x} \cos y) = 3 \cos y \frac{\partial}{\partial x} (e^{2x}) = 3 \cos y (2e^{2x}) = 6e^{2x} \cos y.
fy=y(3e2xcosy)=3e2xy(cosy)=3e2x(siny)=3e2xsiny\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} (3e^{2x} \cos y) = 3e^{2x} \frac{\partial}{\partial y} (\cos y) = 3e^{2x} (-\sin y) = -3e^{2x} \sin y.
Next, we compute the second partial derivatives:
2fyx=y(fx)=y(6e2xcosy)=6e2xy(cosy)=6e2x(siny)=6e2xsiny\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial y} (6e^{2x} \cos y) = 6e^{2x} \frac{\partial}{\partial y} (\cos y) = 6e^{2x} (-\sin y) = -6e^{2x} \sin y.
2fxy=x(fy)=x(3e2xsiny)=3sinyx(e2x)=3siny(2e2x)=6e2xsiny\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial x} (-3e^{2x} \sin y) = -3 \sin y \frac{\partial}{\partial x} (e^{2x}) = -3 \sin y (2e^{2x}) = -6e^{2x} \sin y.
Since 2fyx=6e2xsiny\frac{\partial^2 f}{\partial y \partial x} = -6e^{2x} \sin y and 2fxy=6e2xsiny\frac{\partial^2 f}{\partial x \partial y} = -6e^{2x} \sin y, we can conclude that 2fyx=2fxy\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}.

3. Final Answer

2fyx=2fxy=6e2xsiny\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y} = -6e^{2x} \sin y

Related problems in "Analysis"

The problem is to evaluate the indefinite integral of the function $\sqrt{x} - \frac{1}{2}x + \frac{...

IntegrationIndefinite IntegralPower RuleCalculus
2025/4/27

We are asked to solve two integration problems. First, we need to evaluate $\int (2\sqrt{x} + 5x^{-1...

IntegrationDefinite IntegralsIndefinite IntegralsPower RuleExponential FunctionsLogarithmic Functions
2025/4/27

We are asked to solve the following integral: $\int \frac{\cos x}{\sin^3 x (1-\sin^2 x)^{5/2}} dx$

CalculusIntegrationTrigonometric FunctionsDefinite Integrals
2025/4/27

We are given Laplace's equation: $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/4/27

The problem asks us to verify that the mixed partial derivatives are equal, i.e., $\frac{\partial^2 ...

Partial DerivativesMultivariable CalculusMixed Partial Derivatives
2025/4/27

The problem asks for the first partial derivatives of several functions with two variables. We will ...

Partial DerivativesMultivariable CalculusDifferentiation
2025/4/27

We need to find the limit of the function $\frac{e^x + 2x - 1}{2e^x + 1}$ as $x$ approaches infinity...

LimitsL'Hopital's RuleExponential FunctionsCalculus
2025/4/26

We need to find the integral of the following expression: $\int \frac{dx}{\sin^3(x) \cos^5(x)}$

IntegrationTrigonometric FunctionsCalculus
2025/4/26

We are asked to evaluate the integral $\int \frac{dx}{\sin^3(x) \cos^5(x)}$.

CalculusIntegrationTrigonometric FunctionsDefinite IntegralsSubstitution
2025/4/26

We need to evaluate the integral $\int \frac{dx}{\sin^3(x)\cos^5(x)}$.

CalculusIntegrationTrigonometric FunctionsDefinite IntegralsSubstitution
2025/4/26