First, we find the first partial derivatives:
∂x∂f=∂x∂(3e2xcosy)=3cosy∂x∂(e2x)=3cosy(2e2x)=6e2xcosy. ∂y∂f=∂y∂(3e2xcosy)=3e2x∂y∂(cosy)=3e2x(−siny)=−3e2xsiny. Next, we compute the second partial derivatives:
∂y∂x∂2f=∂y∂(∂x∂f)=∂y∂(6e2xcosy)=6e2x∂y∂(cosy)=6e2x(−siny)=−6e2xsiny. ∂x∂y∂2f=∂x∂(∂y∂f)=∂x∂(−3e2xsiny)=−3siny∂x∂(e2x)=−3siny(2e2x)=−6e2xsiny. Since ∂y∂x∂2f=−6e2xsiny and ∂x∂y∂2f=−6e2xsiny, we can conclude that ∂y∂x∂2f=∂x∂y∂2f.