We need to evaluate the integral $\int \frac{dx}{\sin^3(x)\cos^5(x)}$.
2025/4/26
1. Problem Description
We need to evaluate the integral .
2. Solution Steps
First, we can rewrite the integral as
\int \frac{dx}{\sin^3(x)\cos^5(x)} = \int \frac{1}{\sin^3(x)\cos^5(x)} dx = \int \frac{\sin^2(x) + \cos^2(x)}{\sin^3(x)\cos^5(x)} dx
We can split this into two integrals:
\int \frac{\sin^2(x)}{\sin^3(x)\cos^5(x)} dx + \int \frac{\cos^2(x)}{\sin^3(x)\cos^5(x)} dx = \int \frac{1}{\sin(x)\cos^5(x)} dx + \int \frac{1}{\sin^3(x)\cos^3(x)} dx
= \int \frac{\cos(x)}{\sin(x)\cos^6(x)} dx + \int \frac{\sin(x)\cos(x)}{\sin^4(x)\cos^4(x)} dx
Using the identity , we can write for any integer . Let's multiply the integrand by .
\int \frac{(\sin^2(x) + \cos^2(x))^3}{\sin^3(x)\cos^5(x)} dx = \int \frac{\sin^6(x) + 3\sin^4(x)\cos^2(x) + 3\sin^2(x)\cos^4(x) + \cos^6(x)}{\sin^3(x)\cos^5(x)} dx
= \int \left(\frac{\sin^3(x)}{\cos^5(x)} + \frac{3\sin(x)}{\cos^3(x)} + \frac{3}{\sin(x)\cos(x)} + \frac{\cos(x)}{\sin^3(x)}\right) dx
= \int \frac{\sin^3(x)}{\cos^5(x)} dx + \int \frac{3\sin(x)}{\cos^3(x)} dx + \int \frac{3}{\sin(x)\cos(x)} dx + \int \frac{\cos(x)}{\sin^3(x)} dx
= \int \tan^3(x)\sec^2(x)\sec(x) dx + 3\int \frac{\sin(x)}{\cos^3(x)} dx + 3\int \frac{1}{\sin(x)\cos(x)} dx + \int \frac{\cos(x)}{\sin^3(x)} dx
Note that .
Let . We can rewrite it as follows:
I = \int \frac{dx}{\sin^3(x)\cos^5(x)} = \int \frac{dx}{\frac{\sin^3(x)}{\cos^3(x)}\cos^8(x)} = \int \frac{\sec^8(x)}{\tan^3(x)}dx
Let , then . We can rewrite as .
I = \int \frac{(1+u^2)^3}{u^3} du = \int \frac{1+3u^2+3u^4+u^6}{u^3} du = \int \left(\frac{1}{u^3} + \frac{3}{u} + 3u + u^3\right)du
I = \int u^{-3} + \frac{3}{u} + 3u + u^3 du = -\frac{1}{2}u^{-2} + 3\ln|u| + \frac{3}{2}u^2 + \frac{1}{4}u^4 + C
I = -\frac{1}{2\tan^2(x)} + 3\ln|\tan(x)| + \frac{3}{2}\tan^2(x) + \frac{1}{4}\tan^4(x) + C
I = -\frac{\cot^2(x)}{2} + 3\ln|\tan(x)| + \frac{3}{2}\tan^2(x) + \frac{\tan^4(x)}{4} + C