We need to evaluate the integral $\int \frac{dx}{\sin^3(x)\cos^5(x)}$.

AnalysisCalculusIntegrationTrigonometric FunctionsDefinite IntegralsSubstitution
2025/4/26

1. Problem Description

We need to evaluate the integral dxsin3(x)cos5(x)\int \frac{dx}{\sin^3(x)\cos^5(x)}.

2. Solution Steps

First, we can rewrite the integral as
\int \frac{dx}{\sin^3(x)\cos^5(x)} = \int \frac{1}{\sin^3(x)\cos^5(x)} dx = \int \frac{\sin^2(x) + \cos^2(x)}{\sin^3(x)\cos^5(x)} dx
We can split this into two integrals:
\int \frac{\sin^2(x)}{\sin^3(x)\cos^5(x)} dx + \int \frac{\cos^2(x)}{\sin^3(x)\cos^5(x)} dx = \int \frac{1}{\sin(x)\cos^5(x)} dx + \int \frac{1}{\sin^3(x)\cos^3(x)} dx
= \int \frac{\cos(x)}{\sin(x)\cos^6(x)} dx + \int \frac{\sin(x)\cos(x)}{\sin^4(x)\cos^4(x)} dx
Using the identity sin2(x)+cos2(x)=1\sin^2(x) + \cos^2(x) = 1, we can write 1=(sin2(x)+cos2(x))n1 = (\sin^2(x) + \cos^2(x))^n for any integer nn. Let's multiply the integrand by (sin2(x)+cos2(x))3(\sin^2(x) + \cos^2(x))^3.
\int \frac{(\sin^2(x) + \cos^2(x))^3}{\sin^3(x)\cos^5(x)} dx = \int \frac{\sin^6(x) + 3\sin^4(x)\cos^2(x) + 3\sin^2(x)\cos^4(x) + \cos^6(x)}{\sin^3(x)\cos^5(x)} dx
= \int \left(\frac{\sin^3(x)}{\cos^5(x)} + \frac{3\sin(x)}{\cos^3(x)} + \frac{3}{\sin(x)\cos(x)} + \frac{\cos(x)}{\sin^3(x)}\right) dx
= \int \frac{\sin^3(x)}{\cos^5(x)} dx + \int \frac{3\sin(x)}{\cos^3(x)} dx + \int \frac{3}{\sin(x)\cos(x)} dx + \int \frac{\cos(x)}{\sin^3(x)} dx
= \int \tan^3(x)\sec^2(x)\sec(x) dx + 3\int \frac{\sin(x)}{\cos^3(x)} dx + 3\int \frac{1}{\sin(x)\cos(x)} dx + \int \frac{\cos(x)}{\sin^3(x)} dx
Note that 1sin(x)cos(x)dx=sin2(x)+cos2(x)sin(x)cos(x)dx=sin(x)cos(x)+cos(x)sin(x)dx=tan(x)dx+cot(x)dx=lncos(x)+lnsin(x)+C=lntan(x)+C\int \frac{1}{\sin(x)\cos(x)}dx = \int \frac{\sin^2(x) + \cos^2(x)}{\sin(x)\cos(x)} dx = \int \frac{\sin(x)}{\cos(x)} + \frac{\cos(x)}{\sin(x)} dx = \int \tan(x) dx + \int \cot(x) dx = -\ln|\cos(x)| + \ln|\sin(x)| + C = \ln|\tan(x)| + C.
Let I=dxsin3(x)cos5(x)I = \int \frac{dx}{\sin^3(x)\cos^5(x)}. We can rewrite it as follows:
I = \int \frac{dx}{\sin^3(x)\cos^5(x)} = \int \frac{dx}{\frac{\sin^3(x)}{\cos^3(x)}\cos^8(x)} = \int \frac{\sec^8(x)}{\tan^3(x)}dx
Let u=tan(x)u = \tan(x), then du=sec2(x)dxdu = \sec^2(x)dx. We can rewrite sec8(x)\sec^8(x) as sec6(x)sec2(x)=(1+tan2(x))3sec2(x)=(1+u2)3sec2(x)\sec^6(x)\sec^2(x) = (1+\tan^2(x))^3 \sec^2(x) = (1+u^2)^3 \sec^2(x).
I = \int \frac{(1+u^2)^3}{u^3} du = \int \frac{1+3u^2+3u^4+u^6}{u^3} du = \int \left(\frac{1}{u^3} + \frac{3}{u} + 3u + u^3\right)du
I = \int u^{-3} + \frac{3}{u} + 3u + u^3 du = -\frac{1}{2}u^{-2} + 3\ln|u| + \frac{3}{2}u^2 + \frac{1}{4}u^4 + C
I = -\frac{1}{2\tan^2(x)} + 3\ln|\tan(x)| + \frac{3}{2}\tan^2(x) + \frac{1}{4}\tan^4(x) + C
I = -\frac{\cot^2(x)}{2} + 3\ln|\tan(x)| + \frac{3}{2}\tan^2(x) + \frac{\tan^4(x)}{4} + C

3. Final Answer

12tan2(x)+3lntan(x)+32tan2(x)+14tan4(x)+C-\frac{1}{2\tan^2(x)} + 3\ln|\tan(x)| + \frac{3}{2}\tan^2(x) + \frac{1}{4}\tan^4(x) + C

Related problems in "Analysis"

The problem is to evaluate the indefinite integral of the function $\sqrt{x} - \frac{1}{2}x + \frac{...

IntegrationIndefinite IntegralPower RuleCalculus
2025/4/27

We are asked to solve two integration problems. First, we need to evaluate $\int (2\sqrt{x} + 5x^{-1...

IntegrationDefinite IntegralsIndefinite IntegralsPower RuleExponential FunctionsLogarithmic Functions
2025/4/27

We are asked to solve the following integral: $\int \frac{\cos x}{\sin^3 x (1-\sin^2 x)^{5/2}} dx$

CalculusIntegrationTrigonometric FunctionsDefinite Integrals
2025/4/27

We are given Laplace's equation: $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/4/27

We are given the function $f(x, y) = 3e^{2x} \cos y$. We need to verify that $\frac{\partial^2 f}{\p...

Partial DerivativesMultivariable CalculusDifferentiationClairaut's Theorem
2025/4/27

The problem asks us to verify that the mixed partial derivatives are equal, i.e., $\frac{\partial^2 ...

Partial DerivativesMultivariable CalculusMixed Partial Derivatives
2025/4/27

The problem asks for the first partial derivatives of several functions with two variables. We will ...

Partial DerivativesMultivariable CalculusDifferentiation
2025/4/27

We need to find the limit of the function $\frac{e^x + 2x - 1}{2e^x + 1}$ as $x$ approaches infinity...

LimitsL'Hopital's RuleExponential FunctionsCalculus
2025/4/26

We need to find the integral of the following expression: $\int \frac{dx}{\sin^3(x) \cos^5(x)}$

IntegrationTrigonometric FunctionsCalculus
2025/4/26

We are asked to evaluate the integral $\int \frac{dx}{\sin^3(x) \cos^5(x)}$.

CalculusIntegrationTrigonometric FunctionsDefinite IntegralsSubstitution
2025/4/26