The problem asks us to find the antiderivatives (indefinite integrals) of a set of given functions. We need to find the antiderivative for each function listed from a) to r).

AnalysisIntegrationAntiderivativesCalculusPower RuleIndefinite Integrals
2025/4/28

1. Problem Description

The problem asks us to find the antiderivatives (indefinite integrals) of a set of given functions. We need to find the antiderivative for each function listed from a) to r).

2. Solution Steps

a) Find the antiderivative of x7x^7.
Using the power rule for integration, xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C, we have
x7dx=x7+17+1+C=x88+C\int x^7 dx = \frac{x^{7+1}}{7+1} + C = \frac{x^8}{8} + C.
b) Find the antiderivative of x3\sqrt[3]{x}.
First, rewrite the expression as x1/3x^{1/3}. Then, using the power rule for integration:
x1/3dx=x(1/3)+1(1/3)+1+C=x4/34/3+C=34x4/3+C=34x43+C\int x^{1/3} dx = \frac{x^{(1/3)+1}}{(1/3)+1} + C = \frac{x^{4/3}}{4/3} + C = \frac{3}{4}x^{4/3} + C = \frac{3}{4}\sqrt[3]{x^4} + C.
c) Find the antiderivative of 1x3\frac{1}{x^3}.
Rewrite the expression as x3x^{-3}. Then, using the power rule for integration:
x3dx=x3+13+1+C=x22+C=12x2+C\int x^{-3} dx = \frac{x^{-3+1}}{-3+1} + C = \frac{x^{-2}}{-2} + C = -\frac{1}{2x^2} + C.
d) Find the antiderivative of 1x\frac{1}{\sqrt{x}}.
Rewrite the expression as x1/2x^{-1/2}. Then, using the power rule for integration:
x1/2dx=x(1/2)+1(1/2)+1+C=x1/21/2+C=2x1/2+C=2x+C\int x^{-1/2} dx = \frac{x^{(-1/2)+1}}{(-1/2)+1} + C = \frac{x^{1/2}}{1/2} + C = 2x^{1/2} + C = 2\sqrt{x} + C.
e) Find the antiderivative of 7x7x.
Using the power rule for integration:
7xdx=7x1dx=7x1+11+1+C=7x22+C=72x2+C\int 7x dx = 7 \int x^1 dx = 7 \cdot \frac{x^{1+1}}{1+1} + C = 7 \cdot \frac{x^2}{2} + C = \frac{7}{2}x^2 + C.
f) Find the antiderivative of ln2\ln 2.
Since ln2\ln 2 is a constant, the antiderivative is:
ln2dx=(ln2)1dx=(ln2)x+C=xln2+C\int \ln 2 dx = (\ln 2) \int 1 dx = (\ln 2)x + C = x\ln 2 + C.
g) Find the antiderivative of e3x\frac{e^3}{x}.
Since e3e^3 is a constant, the antiderivative is:
e3xdx=e31xdx=e3lnx+C\int \frac{e^3}{x} dx = e^3 \int \frac{1}{x} dx = e^3 \ln|x| + C.
h) Find the antiderivative of xln3x\ln 3.
Since ln3\ln 3 is a constant, the antiderivative is:
xln3dx=ln3xdx=ln3x22+C=x22ln3+C\int x\ln 3 dx = \ln 3 \int x dx = \ln 3 \cdot \frac{x^2}{2} + C = \frac{x^2}{2}\ln 3 + C.
i) Find the antiderivative of 1xln2\frac{1}{x\ln 2}.
Since ln2\ln 2 is a constant, the antiderivative is:
1xln2dx=1ln21xdx=1ln2lnx+C=lnxln2+C\int \frac{1}{x\ln 2} dx = \frac{1}{\ln 2} \int \frac{1}{x} dx = \frac{1}{\ln 2} \ln|x| + C = \frac{\ln|x|}{\ln 2} + C.
j) Find the antiderivative of 3x+13x3x + \frac{1}{3x}.
(3x+13x)dx=3xdx+13xdx=3xdx+131xdx=3x22+13lnx+C=32x2+13lnx+C\int (3x + \frac{1}{3x}) dx = \int 3x dx + \int \frac{1}{3x} dx = 3\int x dx + \frac{1}{3}\int \frac{1}{x} dx = 3 \cdot \frac{x^2}{2} + \frac{1}{3} \ln|x| + C = \frac{3}{2}x^2 + \frac{1}{3}\ln|x| + C.
k) Find the antiderivative of ex+xe\frac{e}{x} + \frac{x}{e}.
(ex+xe)dx=exdx+xedx=e1xdx+1exdx=elnx+1ex22+C=elnx+x22e+C\int (\frac{e}{x} + \frac{x}{e}) dx = \int \frac{e}{x} dx + \int \frac{x}{e} dx = e\int \frac{1}{x} dx + \frac{1}{e}\int x dx = e\ln|x| + \frac{1}{e} \cdot \frac{x^2}{2} + C = e\ln|x| + \frac{x^2}{2e} + C.
l) Find the antiderivative of xe2+ex1xe^{-2} + ex^{-1}.
Since e2e^{-2} is a constant, and also ee is a constant, the antiderivative is:
(xe2+ex1)dx=e2xdx+e1xdx=e2x22+elnx+C=x22e2+elnx+C\int (xe^{-2} + ex^{-1}) dx = e^{-2}\int x dx + e\int \frac{1}{x} dx = e^{-2}\frac{x^2}{2} + e\ln|x| + C = \frac{x^2}{2e^2} + e\ln|x| + C.
m) Find the antiderivative of (e22e)ex(e^2 - 2^e)e^x.
Since e22ee^2 - 2^e is a constant, the antiderivative is:
(e22e)exdx=(e22e)exdx=(e22e)ex+C\int (e^2 - 2^e)e^x dx = (e^2 - 2^e) \int e^x dx = (e^2 - 2^e) e^x + C.
n) Find the antiderivative of 3x\sqrt{3x}.
3xdx=3xdx=3x1/2dx=3x(1/2)+1(1/2)+1+C=3x3/23/2+C=323x3/2+C=233x3/2+C=233xx+C\int \sqrt{3x} dx = \int \sqrt{3}\sqrt{x} dx = \sqrt{3}\int x^{1/2} dx = \sqrt{3} \frac{x^{(1/2)+1}}{(1/2)+1} + C = \sqrt{3} \frac{x^{3/2}}{3/2} + C = \sqrt{3} \cdot \frac{2}{3}x^{3/2} + C = \frac{2\sqrt{3}}{3}x^{3/2} + C = \frac{2\sqrt{3}}{3} x\sqrt{x} + C.
o) Find the antiderivative of exe+1ex^{e+1}.
exe+1dx=exe+1dx=ex(e+1)+1(e+1)+1+C=exe+2e+2+C=exe+2e+2+C\int ex^{e+1} dx = e \int x^{e+1} dx = e \frac{x^{(e+1)+1}}{(e+1)+1} + C = e \frac{x^{e+2}}{e+2} + C = \frac{ex^{e+2}}{e+2} + C.
p) Find the antiderivative of x7+7x+7x+7x^7 + 7x + \frac{7}{x} + 7.
(x7+7x+7x+7)dx=x7dx+7xdx+7xdx+7dx=x88+7x22+7lnx+7x+C\int (x^7 + 7x + \frac{7}{x} + 7) dx = \int x^7 dx + \int 7x dx + \int \frac{7}{x} dx + \int 7 dx = \frac{x^8}{8} + \frac{7x^2}{2} + 7\ln|x| + 7x + C.
q) Find the antiderivative of ex+xe+e+xe^x + x^e + e + x.
(ex+xe+e+x)dx=exdx+xedx+edx+xdx=ex+xe+1e+1+ex+x22+C\int (e^x + x^e + e + x) dx = \int e^x dx + \int x^e dx + \int e dx + \int x dx = e^x + \frac{x^{e+1}}{e+1} + ex + \frac{x^2}{2} + C.
r) Find the antiderivative of 7x23x+8+1x+2x27x^2 - 3x + 8 + \frac{1}{x} + \frac{2}{x^2}.
(7x23x+8+1x+2x2)dx=7x2dx3xdx+8dx+1xdx+2x2dx=7x2dx3xdx+81dx+1xdx+2x2dx=7x333x22+8x+lnx+2x11+C=73x332x2+8x+lnx2x+C\int (7x^2 - 3x + 8 + \frac{1}{x} + \frac{2}{x^2}) dx = \int 7x^2 dx - \int 3x dx + \int 8 dx + \int \frac{1}{x} dx + \int \frac{2}{x^2} dx = 7\int x^2 dx - 3\int x dx + 8\int 1 dx + \int \frac{1}{x} dx + 2\int x^{-2} dx = 7\cdot \frac{x^3}{3} - 3\cdot \frac{x^2}{2} + 8x + \ln|x| + 2\cdot \frac{x^{-1}}{-1} + C = \frac{7}{3}x^3 - \frac{3}{2}x^2 + 8x + \ln|x| - \frac{2}{x} + C.

3. Final Answer

a) x88+C\frac{x^8}{8} + C
b) 34x4/3+C\frac{3}{4}x^{4/3} + C
c) 12x2+C-\frac{1}{2x^2} + C
d) 2x+C2\sqrt{x} + C
e) 72x2+C\frac{7}{2}x^2 + C
f) xln2+Cx\ln 2 + C
g) e3lnx+Ce^3\ln|x| + C
h) x22ln3+C\frac{x^2}{2}\ln 3 + C
i) lnxln2+C\frac{\ln|x|}{\ln 2} + C
j) 32x2+13lnx+C\frac{3}{2}x^2 + \frac{1}{3}\ln|x| + C
k) elnx+x22e+Ce\ln|x| + \frac{x^2}{2e} + C
l) x22e2+elnx+C\frac{x^2}{2e^2} + e\ln|x| + C
m) (e22e)ex+C(e^2 - 2^e) e^x + C
n) 233xx+C\frac{2\sqrt{3}}{3} x\sqrt{x} + C
o) exe+2e+2+C\frac{ex^{e+2}}{e+2} + C
p) x88+7x22+7lnx+7x+C\frac{x^8}{8} + \frac{7x^2}{2} + 7\ln|x| + 7x + C
q) ex+xe+1e+1+ex+x22+Ce^x + \frac{x^{e+1}}{e+1} + ex + \frac{x^2}{2} + C
r) 73x332x2+8x+lnx2x+C\frac{7}{3}x^3 - \frac{3}{2}x^2 + 8x + \ln|x| - \frac{2}{x} + C

Related problems in "Analysis"

We are asked to find the limit of two expressions, if they exist. If the limit does not exist, we ne...

LimitsDifferentiationAbsolute ValueCalculus
2025/6/8

The image contains four problems related to calculus:

LimitsCalculusEpsilon-Delta DefinitionDerivativesFirst Principle
2025/6/8

We are given a piecewise function $f(x)$ defined as: $f(x) = \begin{cases} 1-\sqrt{-x-1} & \text{if ...

Piecewise FunctionsDomainRangeContinuityGreatest Integer Function
2025/6/8

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7