First, we need to find the gradient vector of f(x,y). The gradient vector is given by: ∇f(x,y)=⟨∂x∂f,∂y∂f⟩ We compute the partial derivatives:
∂x∂f=∂x∂(x2y−xy2)=2xy−y2 ∂y∂f=∂y∂(x2y−xy2)=x2−2xy So the gradient vector is:
∇f(x,y)=⟨2xy−y2,x2−2xy⟩ Now, we evaluate the gradient vector at the point p=(−2,3): ∇f(−2,3)=⟨2(−2)(3)−(3)2,(−2)2−2(−2)(3)⟩=⟨−12−9,4+12⟩=⟨−21,16⟩ Next, we need to find the value of the function f(x,y) at the point p=(−2,3): f(−2,3)=(−2)2(3)−(−2)(3)2=(4)(3)−(−2)(9)=12+18=30 Finally, we find the equation of the tangent plane at the point p=(−2,3). The equation of the tangent plane is given by: z−f(x0,y0)=∂x∂f(x0,y0)(x−x0)+∂y∂f(x0,y0)(y−y0) z−30=−21(x−(−2))+16(y−3) z−30=−21(x+2)+16(y−3) z−30=−21x−42+16y−48 z=−21x+16y−42−48+30 z=−21x+16y−60 The equation of the tangent plane is 21x−16y+z+60=0.