与えられた5つの根号計算の問題を解く。 (1) $\sqrt{10} \times \sqrt{2}$ (2) $\sqrt{21} \div \sqrt{7}$ (3) $2\sqrt{6} - 9\sqrt{6}$ (4) $-\sqrt{27} + \sqrt{75}$ (5) $(\sqrt{2}+1)^2$

算数根号計算平方根計算
2025/5/6

1. 問題の内容

与えられた5つの根号計算の問題を解く。
(1) 10×2\sqrt{10} \times \sqrt{2}
(2) 21÷7\sqrt{21} \div \sqrt{7}
(3) 26962\sqrt{6} - 9\sqrt{6}
(4) 27+75-\sqrt{27} + \sqrt{75}
(5) (2+1)2(\sqrt{2}+1)^2

2. 解き方の手順

(1) 10×2=10×2=20=4×5=4×5=25\sqrt{10} \times \sqrt{2} = \sqrt{10 \times 2} = \sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2\sqrt{5}
(2) 21÷7=217=3\sqrt{21} \div \sqrt{7} = \sqrt{\frac{21}{7}} = \sqrt{3}
(3) 2696=(29)6=762\sqrt{6} - 9\sqrt{6} = (2-9)\sqrt{6} = -7\sqrt{6}
(4) 27+75=9×3+25×3=33+53=(3+5)3=23-\sqrt{27} + \sqrt{75} = -\sqrt{9 \times 3} + \sqrt{25 \times 3} = -3\sqrt{3} + 5\sqrt{3} = (-3+5)\sqrt{3} = 2\sqrt{3}
(5) (2+1)2=(2)2+2×2×1+12=2+22+1=3+22(\sqrt{2}+1)^2 = (\sqrt{2})^2 + 2 \times \sqrt{2} \times 1 + 1^2 = 2 + 2\sqrt{2} + 1 = 3 + 2\sqrt{2}

3. 最終的な答え

(1) 252\sqrt{5}
(2) 3\sqrt{3}
(3) 76-7\sqrt{6}
(4) 232\sqrt{3}
(5) 3+223 + 2\sqrt{2}