Given that $x$ is real and $x \neq 0$, simplify the expression $(x-\frac{1}{x})^3 + (x+\frac{1}{x})^3$.

AlgebraAlgebraic simplificationPolynomialsExpansionExponents
2025/3/19

1. Problem Description

Given that xx is real and x0x \neq 0, simplify the expression (x1x)3+(x+1x)3(x-\frac{1}{x})^3 + (x+\frac{1}{x})^3.

2. Solution Steps

We are asked to simplify the expression (x1x)3+(x+1x)3(x-\frac{1}{x})^3 + (x+\frac{1}{x})^3.
Let a=x1xa = x-\frac{1}{x} and b=x+1xb = x+\frac{1}{x}. Then the expression is a3+b3a^3+b^3. We know that
a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a+b)(a^2 - ab + b^2)
Alternatively, we can use the formula
a3+b3=(a+b)33ab(a+b)a^3 + b^3 = (a+b)^3 - 3ab(a+b)
Also, we can expand the terms directly:
(x1x)3=x33x2(1x)+3x(1x)2(1x)3=x33x+3x1x3(x-\frac{1}{x})^3 = x^3 - 3x^2(\frac{1}{x}) + 3x(\frac{1}{x})^2 - (\frac{1}{x})^3 = x^3 - 3x + \frac{3}{x} - \frac{1}{x^3}
(x+1x)3=x3+3x2(1x)+3x(1x)2+(1x)3=x3+3x+3x+1x3(x+\frac{1}{x})^3 = x^3 + 3x^2(\frac{1}{x}) + 3x(\frac{1}{x})^2 + (\frac{1}{x})^3 = x^3 + 3x + \frac{3}{x} + \frac{1}{x^3}
Adding them together, we have
(x1x)3+(x+1x)3=x33x+3x1x3+x3+3x+3x+1x3=2x3+6x(x-\frac{1}{x})^3 + (x+\frac{1}{x})^3 = x^3 - 3x + \frac{3}{x} - \frac{1}{x^3} + x^3 + 3x + \frac{3}{x} + \frac{1}{x^3} = 2x^3 + \frac{6}{x}
=2x3+6x=2x3+6x=2(x3+3x)=2(x4+3x) = 2x^3 + \frac{6}{x} = 2x^3 + \frac{6}{x} = 2(x^3 + \frac{3}{x}) = 2(\frac{x^4+3}{x})
Therefore,
(x1x)3+(x+1x)3=2x3+6x=2x4+6x(x-\frac{1}{x})^3 + (x+\frac{1}{x})^3 = 2x^3 + \frac{6}{x} = \frac{2x^4+6}{x}

3. Final Answer

2x4+6x\frac{2x^4+6}{x}