The problem asks to simplify four expressions using only positive exponents and without a calculator. a. $(9^{1/2}x^2y)(27^{1/3}y^{-1})$ b. $(x^{1/2})^{-2}$ c. $(\frac{1}{125})^{2/3}$ d. $\frac{8x^3}{-2x^{-2}}$

AlgebraExponentsSimplificationRadicalsAlgebraic Expressions
2025/6/4

1. Problem Description

The problem asks to simplify four expressions using only positive exponents and without a calculator.
a. (91/2x2y)(271/3y1)(9^{1/2}x^2y)(27^{1/3}y^{-1})
b. (x1/2)2(x^{1/2})^{-2}
c. (1125)2/3(\frac{1}{125})^{2/3}
d. 8x32x2\frac{8x^3}{-2x^{-2}}

2. Solution Steps

a. (91/2x2y)(271/3y1)(9^{1/2}x^2y)(27^{1/3}y^{-1})
First, evaluate 91/29^{1/2} and 271/327^{1/3}:
91/2=9=39^{1/2} = \sqrt{9} = 3
271/3=273=327^{1/3} = \sqrt[3]{27} = 3
Substitute these values into the expression:
(3x2y)(3y1)(3x^2y)(3y^{-1})
Multiply the terms:
33x2yy13 \cdot 3 \cdot x^2 \cdot y \cdot y^{-1}
9x2y1+(1)9x^2y^{1+(-1)}
9x2y09x^2y^0
Since y0=1y^0 = 1, we have:
9x29x^2
b. (x1/2)2(x^{1/2})^{-2}
Using the power of a power rule, (am)n=amn(a^m)^n = a^{m \cdot n}:
x(1/2)(2)x^{(1/2) \cdot (-2)}
x1x^{-1}
To express with positive exponent:
x1=1xx^{-1} = \frac{1}{x}
c. (1125)2/3(\frac{1}{125})^{2/3}
(1125)2/3=12/31252/3(\frac{1}{125})^{2/3} = \frac{1^{2/3}}{125^{2/3}}
12/3=11^{2/3} = 1
1252/3=(1251/3)2=(1253)2=(5)2=25125^{2/3} = (125^{1/3})^2 = (\sqrt[3]{125})^2 = (5)^2 = 25
Therefore,
125\frac{1}{25}
d. 8x32x2\frac{8x^3}{-2x^{-2}}
Divide the coefficients:
82=4\frac{8}{-2} = -4
Divide the variables:
x3x2=x3(2)=x3+2=x5\frac{x^3}{x^{-2}} = x^{3 - (-2)} = x^{3+2} = x^5
Combine:
4x5-4x^5
Since we want only positive exponents, we write the simplified expression as:
4x5-4x^5

3. Final Answer

a. 9x29x^2
b. 1x\frac{1}{x}
c. 125\frac{1}{25}
d. 4x5-4x^5