与えられた9個の数式を計算する問題です。算数根号計算2025/5/61. 問題の内容与えられた9個の数式を計算する問題です。2. 解き方の手順各問題ごとに手順を説明します。(1) 52×365\sqrt{2} \times 3\sqrt{6}52×36係数同士、ルート同士をかけます。5×3×2×6=1512=154×3=15×23=3035 \times 3 \times \sqrt{2} \times \sqrt{6} = 15\sqrt{12} = 15\sqrt{4 \times 3} = 15 \times 2 \sqrt{3} = 30\sqrt{3}5×3×2×6=1512=154×3=15×23=303(2) 348\sqrt{3}\sqrt{48}3483×48=3×48=144=12\sqrt{3} \times \sqrt{48} = \sqrt{3 \times 48} = \sqrt{144} = 123×48=3×48=144=12(3) 427\frac{\sqrt{42}}{\sqrt{7}}742427=427=6\frac{\sqrt{42}}{\sqrt{7}} = \sqrt{\frac{42}{7}} = \sqrt{6}742=742=6(4) 3(23−6)\sqrt{3}(2\sqrt{3}-\sqrt{6})3(23−6)分配法則を使って展開します。3×23−3×6=2×3−18=6−9×2=6−32\sqrt{3} \times 2\sqrt{3} - \sqrt{3} \times \sqrt{6} = 2 \times 3 - \sqrt{18} = 6 - \sqrt{9 \times 2} = 6 - 3\sqrt{2}3×23−3×6=2×3−18=6−9×2=6−32(5) 5(320−445)\sqrt{5}(3\sqrt{20}-4\sqrt{45})5(320−445)5(320−445)=5(34×5−49×5)=5(3×25−4×35)=5(65−125)=5(−65)=−6×5=−30\sqrt{5}(3\sqrt{20}-4\sqrt{45}) = \sqrt{5}(3\sqrt{4\times 5} - 4\sqrt{9\times 5}) = \sqrt{5}(3\times 2\sqrt{5} - 4\times 3\sqrt{5}) = \sqrt{5}(6\sqrt{5} - 12\sqrt{5}) = \sqrt{5}(-6\sqrt{5}) = -6 \times 5 = -305(320−445)=5(34×5−49×5)=5(3×25−4×35)=5(65−125)=5(−65)=−6×5=−30(6) (3+7)2(\sqrt{3}+\sqrt{7})^2(3+7)2(a+b)2=a2+2ab+b2(a+b)^2 = a^2 + 2ab + b^2(a+b)2=a2+2ab+b2 を使って展開します。(3+7)2=(3)2+2×3×7+(7)2=3+221+7=10+221(\sqrt{3}+\sqrt{7})^2 = (\sqrt{3})^2 + 2 \times \sqrt{3} \times \sqrt{7} + (\sqrt{7})^2 = 3 + 2\sqrt{21} + 7 = 10 + 2\sqrt{21}(3+7)2=(3)2+2×3×7+(7)2=3+221+7=10+221(7) (6−32)2(\sqrt{6}-3\sqrt{2})^2(6−32)2(a−b)2=a2−2ab+b2(a-b)^2 = a^2 - 2ab + b^2(a−b)2=a2−2ab+b2 を使って展開します。(6−32)2=(6)2−2×6×32+(32)2=6−612+9×2=6−64×3+18=6−6×23+18=24−123(\sqrt{6}-3\sqrt{2})^2 = (\sqrt{6})^2 - 2 \times \sqrt{6} \times 3\sqrt{2} + (3\sqrt{2})^2 = 6 - 6\sqrt{12} + 9 \times 2 = 6 - 6\sqrt{4\times 3} + 18 = 6 - 6 \times 2 \sqrt{3} + 18 = 24 - 12\sqrt{3}(6−32)2=(6)2−2×6×32+(32)2=6−612+9×2=6−64×3+18=6−6×23+18=24−123(8) (22−3)(22+3)(2\sqrt{2}-\sqrt{3})(2\sqrt{2}+\sqrt{3})(22−3)(22+3)(a−b)(a+b)=a2−b2(a-b)(a+b) = a^2 - b^2(a−b)(a+b)=a2−b2 を使って展開します。(22−3)(22+3)=(22)2−(3)2=4×2−3=8−3=5(2\sqrt{2}-\sqrt{3})(2\sqrt{2}+\sqrt{3}) = (2\sqrt{2})^2 - (\sqrt{3})^2 = 4 \times 2 - 3 = 8 - 3 = 5(22−3)(22+3)=(22)2−(3)2=4×2−3=8−3=5(9) (20+3)(5−27)(\sqrt{20}+\sqrt{3})(\sqrt{5}-\sqrt{27})(20+3)(5−27)(20+3)(5−27)=(4×5+3)(5−9×3)=(25+3)(5−33)=25×5−25×33+3×5−3×33=2×5−615+15−3×3=10−515−9=1−515(\sqrt{20}+\sqrt{3})(\sqrt{5}-\sqrt{27}) = (\sqrt{4\times 5}+\sqrt{3})(\sqrt{5}-\sqrt{9\times 3}) = (2\sqrt{5}+\sqrt{3})(\sqrt{5}-3\sqrt{3}) = 2\sqrt{5} \times \sqrt{5} - 2\sqrt{5} \times 3\sqrt{3} + \sqrt{3} \times \sqrt{5} - \sqrt{3} \times 3\sqrt{3} = 2 \times 5 - 6\sqrt{15} + \sqrt{15} - 3 \times 3 = 10 - 5\sqrt{15} - 9 = 1 - 5\sqrt{15}(20+3)(5−27)=(4×5+3)(5−9×3)=(25+3)(5−33)=25×5−25×33+3×5−3×33=2×5−615+15−3×3=10−515−9=1−5153. 最終的な答え(1) 30330\sqrt{3}303(2) 121212(3) 6\sqrt{6}6(4) 6−326 - 3\sqrt{2}6−32(5) −30-30−30(6) 10+22110 + 2\sqrt{21}10+221(7) 24−12324 - 12\sqrt{3}24−123(8) 555(9) 1−5151 - 5\sqrt{15}1−515