$\alpha = 2 + 2i$, $\beta = \sqrt{3} + i$ のとき、$\alpha\beta$ と $\frac{\alpha}{\beta}$ をそれぞれ極形式で表す問題です。代数学複素数極形式複素数の積複素数の商2025/5/71. 問題の内容α=2+2i\alpha = 2 + 2iα=2+2i, β=3+i\beta = \sqrt{3} + iβ=3+i のとき、αβ\alpha\betaαβ と αβ\frac{\alpha}{\beta}βα をそれぞれ極形式で表す問題です。2. 解き方の手順まず、α\alphaα と β\betaβ を極形式で表します。α=2+2i\alpha = 2+2iα=2+2i について、絶対値 ∣α∣=22+22=8=22|\alpha| = \sqrt{2^2 + 2^2} = \sqrt{8} = 2\sqrt{2}∣α∣=22+22=8=22偏角 arg(α)=arctan(22)=arctan(1)=π4\arg(\alpha) = \arctan(\frac{2}{2}) = \arctan(1) = \frac{\pi}{4}arg(α)=arctan(22)=arctan(1)=4πよって、α=22(cosπ4+isinπ4)\alpha = 2\sqrt{2}(\cos{\frac{\pi}{4}} + i\sin{\frac{\pi}{4}})α=22(cos4π+isin4π)β=3+i\beta = \sqrt{3}+iβ=3+i について、絶対値 ∣β∣=(3)2+12=3+1=4=2|\beta| = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{3+1} = \sqrt{4} = 2∣β∣=(3)2+12=3+1=4=2偏角 arg(β)=arctan(13)=π6\arg(\beta) = \arctan(\frac{1}{\sqrt{3}}) = \frac{\pi}{6}arg(β)=arctan(31)=6πよって、β=2(cosπ6+isinπ6)\beta = 2(\cos{\frac{\pi}{6}} + i\sin{\frac{\pi}{6}})β=2(cos6π+isin6π)次に、αβ\alpha\betaαβ を求めます。αβ=∣α∣∣β∣(cos(arg(α)+arg(β))+isin(arg(α)+arg(β)))\alpha\beta = |\alpha||\beta| (\cos{(\arg(\alpha) + \arg(\beta))} + i\sin{(\arg(\alpha) + \arg(\beta))})αβ=∣α∣∣β∣(cos(arg(α)+arg(β))+isin(arg(α)+arg(β)))αβ=(22)(2)(cos(π4+π6)+isin(π4+π6))\alpha\beta = (2\sqrt{2})(2)(\cos{(\frac{\pi}{4} + \frac{\pi}{6})} + i\sin{(\frac{\pi}{4} + \frac{\pi}{6})})αβ=(22)(2)(cos(4π+6π)+isin(4π+6π))αβ=42(cos(3π+2π12)+isin(3π+2π12))\alpha\beta = 4\sqrt{2}(\cos{(\frac{3\pi + 2\pi}{12})} + i\sin{(\frac{3\pi + 2\pi}{12})})αβ=42(cos(123π+2π)+isin(123π+2π))αβ=42(cos5π12+isin5π12)\alpha\beta = 4\sqrt{2}(\cos{\frac{5\pi}{12}} + i\sin{\frac{5\pi}{12}})αβ=42(cos125π+isin125π)最後に、αβ\frac{\alpha}{\beta}βα を求めます。αβ=∣α∣∣β∣(cos(arg(α)−arg(β))+isin(arg(α)−arg(β)))\frac{\alpha}{\beta} = \frac{|\alpha|}{|\beta|} (\cos{(\arg(\alpha) - \arg(\beta))} + i\sin{(\arg(\alpha) - \arg(\beta))})βα=∣β∣∣α∣(cos(arg(α)−arg(β))+isin(arg(α)−arg(β)))αβ=222(cos(π4−π6)+isin(π4−π6))\frac{\alpha}{\beta} = \frac{2\sqrt{2}}{2}(\cos{(\frac{\pi}{4} - \frac{\pi}{6})} + i\sin{(\frac{\pi}{4} - \frac{\pi}{6})})βα=222(cos(4π−6π)+isin(4π−6π))αβ=2(cos(3π−2π12)+isin(3π−2π12))\frac{\alpha}{\beta} = \sqrt{2}(\cos{(\frac{3\pi - 2\pi}{12})} + i\sin{(\frac{3\pi - 2\pi}{12})})βα=2(cos(123π−2π)+isin(123π−2π))αβ=2(cosπ12+isinπ12)\frac{\alpha}{\beta} = \sqrt{2}(\cos{\frac{\pi}{12}} + i\sin{\frac{\pi}{12}})βα=2(cos12π+isin12π)3. 最終的な答えαβ=42(cos5π12+isin5π12)\alpha\beta = 4\sqrt{2}(\cos{\frac{5\pi}{12}} + i\sin{\frac{5\pi}{12}})αβ=42(cos125π+isin125π)αβ=2(cosπ12+isinπ12)\frac{\alpha}{\beta} = \sqrt{2}(\cos{\frac{\pi}{12}} + i\sin{\frac{\pi}{12}})βα=2(cos12π+isin12π)