定積分 $\int_{0}^{1} \frac{x^2+2}{x+2} dx$ を計算します。解析学定積分積分有理関数計算2025/5/71. 問題の内容定積分 ∫01x2+2x+2dx\int_{0}^{1} \frac{x^2+2}{x+2} dx∫01x+2x2+2dx を計算します。2. 解き方の手順まず、被積分関数を多項式と有理式に分解します。x2+2x^2 + 2x2+2 を x+2x+2x+2 で割ると、x2+2=(x−2)(x+2)+6x^2 + 2 = (x-2)(x+2) + 6x2+2=(x−2)(x+2)+6となるので、x2+2x+2=(x−2)(x+2)+6x+2=x−2+6x+2\frac{x^2+2}{x+2} = \frac{(x-2)(x+2) + 6}{x+2} = x - 2 + \frac{6}{x+2}x+2x2+2=x+2(x−2)(x+2)+6=x−2+x+26となります。したがって、∫01x2+2x+2dx=∫01(x−2+6x+2)dx\int_{0}^{1} \frac{x^2+2}{x+2} dx = \int_{0}^{1} \left(x - 2 + \frac{6}{x+2}\right) dx∫01x+2x2+2dx=∫01(x−2+x+26)dx=∫01xdx−∫012dx+∫016x+2dx= \int_{0}^{1} x dx - \int_{0}^{1} 2 dx + \int_{0}^{1} \frac{6}{x+2} dx=∫01xdx−∫012dx+∫01x+26dx=[x22]01−[2x]01+[6ln∣x+2∣]01= \left[ \frac{x^2}{2} \right]_{0}^{1} - \left[ 2x \right]_{0}^{1} + \left[ 6 \ln |x+2| \right]_{0}^{1}=[2x2]01−[2x]01+[6ln∣x+2∣]01=122−022−(2⋅1−2⋅0)+6(ln∣1+2∣−ln∣0+2∣)= \frac{1^2}{2} - \frac{0^2}{2} - (2\cdot 1 - 2 \cdot 0) + 6 (\ln |1+2| - \ln |0+2|)=212−202−(2⋅1−2⋅0)+6(ln∣1+2∣−ln∣0+2∣)=12−2+6(ln3−ln2)= \frac{1}{2} - 2 + 6 (\ln 3 - \ln 2)=21−2+6(ln3−ln2)=12−2+6ln32= \frac{1}{2} - 2 + 6 \ln \frac{3}{2}=21−2+6ln23=−32+6ln32= -\frac{3}{2} + 6 \ln \frac{3}{2}=−23+6ln233. 最終的な答え∫01x2+2x+2dx=−32+6ln32\int_{0}^{1} \frac{x^2+2}{x+2} dx = -\frac{3}{2} + 6 \ln \frac{3}{2}∫01x+2x2+2dx=−23+6ln23