First, we find the partial derivatives of w with respect to x,y,z: ∂x∂w=2x ∂y∂w=x2 ∂z∂w=2z Next, we find the partial derivatives of x,y,z with respect to θ: ∂θ∂x=ρ(−sinθ)sinϕ=−ρsinθsinϕ ∂θ∂y=ρ(cosθ)sinϕ=ρcosθsinϕ ∂θ∂z=0 Using the chain rule, we have:
∂θ∂w=∂x∂w∂θ∂x+∂y∂w∂θ∂y+∂z∂w∂θ∂z ∂θ∂w=(2x)(−ρsinθsinϕ)+(x2)(ρcosθsinϕ)+(2z)(0) ∂θ∂w=−2xρsinθsinϕ+x2ρcosθsinϕ Now, we evaluate x,y,z at ρ=2, θ=π, and ϕ=2π: x=2cosπsin2π=2(−1)(1)=−2 y=2sinπsin2π=2(0)(1)=0 z=2cos2π=2(0)=0 Substitute these values into the expression for ∂θ∂w: ∂θ∂w=−2(−2)(2)sinπsin2π+(−2)2(2)cosπsin2π ∂θ∂w=8(0)(1)+4(2)(−1)(1) ∂θ∂w=0−8=−8