We will use the chain rule to find ∂t∂z. First, we find the partial derivatives of z with respect to x and y. ∂x∂z=2xy ∂y∂z=x2 Next, we find the partial derivatives of x and y with respect to t. ∂t∂x=2 ∂t∂y=−s(2t)=−2st Now, we apply the chain rule:
∂t∂z=∂x∂z∂t∂x+∂y∂z∂t∂y ∂t∂z=(2xy)(2)+(x2)(−2st)=4xy−2stx2 Substitute x=2t+s and y=1−st2 into the equation: ∂t∂z=4(2t+s)(1−st2)−2st(2t+s)2 Now we need to evaluate this at s=1 and t=−2. x=2(−2)+1=−4+1=−3 y=1−(1)(−2)2=1−4=−3 ∂t∂z∣s=1,t=−2=4(−3)(−3)−2(1)(−2)(−3)2 =4(9)−2(−2)(9)