First, we find the indefinite integral of f(x). ∫f(x)dx=∫(4x3−2x)dx We can split the integral:
∫(4x3−2x)dx=∫4x3dx−∫2xdx Now we can integrate each term.
∫4x3dx=4∫x3dx=4⋅4x4=x4 ∫2xdx=2∫xdx=2⋅2x2=x2 So the indefinite integral is
∫(4x3−2x)dx=x4−x2+C Now we can evaluate the definite integral:
∫04(4x3−2x)dx=[x4−x2]04 =(44−42)−(04−02) =(256−16)−(0−0)