The problem asks us to expand the expression $(2x + y - 3z)^2$.

AlgebraAlgebraic ExpansionPolynomialsMultivariable Expressions
2025/5/10

1. Problem Description

The problem asks us to expand the expression (2x+y3z)2(2x + y - 3z)^2.

2. Solution Steps

We can use the formula (a+b+c)2=a2+b2+c2+2ab+2bc+2ca(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca.
In our case, a=2xa = 2x, b=yb = y, and c=3zc = -3z.
Applying the formula, we get:
(2x+y3z)2=(2x)2+(y)2+(3z)2+2(2x)(y)+2(y)(3z)+2(3z)(2x)(2x + y - 3z)^2 = (2x)^2 + (y)^2 + (-3z)^2 + 2(2x)(y) + 2(y)(-3z) + 2(-3z)(2x)
=4x2+y2+9z2+4xy6yz12zx= 4x^2 + y^2 + 9z^2 + 4xy - 6yz - 12zx
Therefore, (2x+y3z)2=4x2+y2+9z2+4xy6yz12zx(2x + y - 3z)^2 = 4x^2 + y^2 + 9z^2 + 4xy - 6yz - 12zx.

3. Final Answer

4x2+y2+9z2+4xy6yz12zx4x^2 + y^2 + 9z^2 + 4xy - 6yz - 12zx