The problem involves analyzing the function $f(x) = \frac{x}{x^2-1}$. We need to determine the domain, check if it's an odd function, prove a given equality, study the variations on specified intervals, deduce the variations on other intervals, and finally, create the variation table.

AnalysisFunction AnalysisDomainOdd FunctionFunction VariationsMonotonicityDerivatives
2025/5/10

1. Problem Description

The problem involves analyzing the function f(x)=xx21f(x) = \frac{x}{x^2-1}. We need to determine the domain, check if it's an odd function, prove a given equality, study the variations on specified intervals, deduce the variations on other intervals, and finally, create the variation table.

2. Solution Steps

1) Determine the domain DfD_f of the function ff.
The function f(x)=xx21f(x) = \frac{x}{x^2-1} is defined when the denominator is not zero.
x210x^2 - 1 \neq 0
x21x^2 \neq 1
x±1x \neq \pm 1
Therefore, the domain is Df=R{1,1}=(,1)(1,1)(1,)D_f = \mathbb{R} \setminus \{-1, 1\} = (-\infty, -1) \cup (-1, 1) \cup (1, \infty).
2) Verify that ff is an odd function.
A function is odd if f(x)=f(x)f(-x) = -f(x) for all xx in its domain.
f(x)=x(x)21=xx21=xx21=f(x)f(-x) = \frac{-x}{(-x)^2 - 1} = \frac{-x}{x^2 - 1} = -\frac{x}{x^2 - 1} = -f(x)
Since f(x)=f(x)f(-x) = -f(x), the function ff is odd.
3) Show that for all real numbers aa and bb distinct from DfD_f, we have:
T=f(a)f(b)ab=ab+1(a21)(b21)T = \frac{f(a) - f(b)}{a - b} = -\frac{ab+1}{(a^2-1)(b^2-1)}
f(a)=aa21f(a) = \frac{a}{a^2 - 1} and f(b)=bb21f(b) = \frac{b}{b^2 - 1}
f(a)f(b)=aa21bb21=a(b21)b(a21)(a21)(b21)=ab2aba2+b(a21)(b21)=ab(ba)(ab)(a21)(b21)=ab(ba)+(ba)(a21)(b21)=(ba)(ab+1)(a21)(b21)f(a) - f(b) = \frac{a}{a^2 - 1} - \frac{b}{b^2 - 1} = \frac{a(b^2 - 1) - b(a^2 - 1)}{(a^2 - 1)(b^2 - 1)} = \frac{ab^2 - a - ba^2 + b}{(a^2 - 1)(b^2 - 1)} = \frac{ab(b - a) - (a - b)}{(a^2 - 1)(b^2 - 1)} = \frac{ab(b - a) + (b - a)}{(a^2 - 1)(b^2 - 1)} = \frac{(b - a)(ab + 1)}{(a^2 - 1)(b^2 - 1)}
Then,
f(a)f(b)ab=(ba)(ab+1)(ab)(a21)(b21)=(ab)(ab+1)(ab)(a21)(b21)=ab+1(a21)(b21)\frac{f(a) - f(b)}{a - b} = \frac{(b - a)(ab + 1)}{(a - b)(a^2 - 1)(b^2 - 1)} = \frac{-(a - b)(ab + 1)}{(a - b)(a^2 - 1)(b^2 - 1)} = -\frac{ab + 1}{(a^2 - 1)(b^2 - 1)}
4) Study the variations of ff on [0,1[[0, 1[ and ]1,+[]1, +\infty[.
We know that T=f(a)f(b)ab=ab+1(a21)(b21)T = \frac{f(a) - f(b)}{a - b} = -\frac{ab + 1}{(a^2 - 1)(b^2 - 1)}.
Let a,b]1,[a, b \in ]1, \infty[ with aba \neq b.
Since a>1a > 1 and b>1b > 1, we have a2>1a^2 > 1 and b2>1b^2 > 1, so a21>0a^2 - 1 > 0 and b21>0b^2 - 1 > 0. Also ab>1ab > 1, so ab+1>0ab + 1 > 0.
Thus, T=ab+1(a21)(b21)<0T = -\frac{ab + 1}{(a^2 - 1)(b^2 - 1)} < 0.
Since T<0T < 0, the function ff is decreasing on ]1,[]1, \infty[.
Let a,b[0,1[a, b \in [0, 1[ with aba \neq b.
Since 0a<10 \le a < 1 and 0b<10 \le b < 1, we have a2<1a^2 < 1 and b2<1b^2 < 1, so a21<0a^2 - 1 < 0 and b21<0b^2 - 1 < 0. Also 0ab<10 \le ab < 1, so 1ab+1<21 \le ab + 1 < 2.
Thus, T=ab+1(a21)(b21)=(+)()()=(+)(+)<0T = -\frac{ab + 1}{(a^2 - 1)(b^2 - 1)} = -\frac{(+)}{(-)(-)} = -\frac{(+)}{(+)} < 0.
Since T<0T < 0, the function ff is decreasing on [0,1[[0, 1[.
5) Deduce the variations of ff on ]1,0]]-1, 0] and ],1[]-\infty, -1[.
Since ff is odd, f(x)=f(x)f(-x) = -f(x). If xx increases, then x-x decreases.
If ff is decreasing on [0,1[[0, 1[, then it is also decreasing on ]1,0]]-1, 0].
If ff is decreasing on ]1,[]1, \infty[, then it is also decreasing on ],1[]-\infty, -1[.
6) Draw the variation table of ff on DfD_f.
x | -inf | -1 | | 0 | | 1 | +inf
-------|-------|-----|------|----|------|-----|--------
f'(x) | - | | - | | - | | -
-------|-------|-----|------|----|------|-----|--------
f(x) | 0 || -inf | | 0 | | +inf|| 0

3. Final Answer

1) Df=(,1)(1,1)(1,)D_f = (-\infty, -1) \cup (-1, 1) \cup (1, \infty)
2) ff is odd
3) f(a)f(b)ab=ab+1(a21)(b21)\frac{f(a) - f(b)}{a - b} = -\frac{ab + 1}{(a^2 - 1)(b^2 - 1)}
4) ff is decreasing on [0,1[[0, 1[ and ]1,[]1, \infty[
5) ff is decreasing on ]1,0]]-1, 0] and ],1[]-\infty, -1[
6) Variation table as described above.

Related problems in "Analysis"

We are asked to differentiate the given expressions with respect to $x$. The expressions are: a) $(3...

DifferentiationPower RuleQuotient RuleCalculus
2025/6/9

We are asked to differentiate the function $y = 3x^2 + 2x + 5$ from the first principle.

DifferentiationFirst PrincipleCalculusLimitsPolynomials
2025/6/9

The problem has three parts. 2.1: A balloon is rising at 2 m/s and a boy is cycling at 5 m/s. When t...

Related RatesIntermediate Value TheoremMean Value TheoremCalculusDerivativesContinuityDifferentiation
2025/6/8

We are asked to find the limit of two expressions, if they exist. If the limit does not exist, we ne...

LimitsDifferentiationAbsolute ValueCalculus
2025/6/8

The image contains four problems related to calculus:

LimitsCalculusEpsilon-Delta DefinitionDerivativesFirst Principle
2025/6/8

We are given a piecewise function $f(x)$ defined as: $f(x) = \begin{cases} 1-\sqrt{-x-1} & \text{if ...

Piecewise FunctionsDomainRangeContinuityGreatest Integer Function
2025/6/8

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7