与えられた数列の和 $S$ を求める問題です。数列は以下の通りです。 $S = 1 + 4x + 7x^2 + 10x^3 + \dots + (3n-2)x^{n-1}$代数学数列等比数列級数代数2025/5/131. 問題の内容与えられた数列の和 SSS を求める問題です。数列は以下の通りです。S=1+4x+7x2+10x3+⋯+(3n−2)xn−1S = 1 + 4x + 7x^2 + 10x^3 + \dots + (3n-2)x^{n-1}S=1+4x+7x2+10x3+⋯+(3n−2)xn−12. 解き方の手順まず、SSS を書き下します。S=1+4x+7x2+10x3+⋯+(3n−2)xn−1S = 1 + 4x + 7x^2 + 10x^3 + \dots + (3n-2)x^{n-1}S=1+4x+7x2+10x3+⋯+(3n−2)xn−1次に、xSxSxS を書き下します。xS=x+4x2+7x3+10x4+⋯+(3n−2)xnxS = x + 4x^2 + 7x^3 + 10x^4 + \dots + (3n-2)x^{n}xS=x+4x2+7x3+10x4+⋯+(3n−2)xnSSS から xSxSxS を引きます。S−xS=(1+4x+7x2+10x3+⋯+(3n−2)xn−1)−(x+4x2+7x3+10x4+⋯+(3n−2)xn)S - xS = (1 + 4x + 7x^2 + 10x^3 + \dots + (3n-2)x^{n-1}) - (x + 4x^2 + 7x^3 + 10x^4 + \dots + (3n-2)x^{n})S−xS=(1+4x+7x2+10x3+⋯+(3n−2)xn−1)−(x+4x2+7x3+10x4+⋯+(3n−2)xn)S(1−x)=1+3x+3x2+3x3+⋯+3xn−1−(3n−2)xnS(1-x) = 1 + 3x + 3x^2 + 3x^3 + \dots + 3x^{n-1} - (3n-2)x^{n}S(1−x)=1+3x+3x2+3x3+⋯+3xn−1−(3n−2)xnS(1−x)=1+3(x+x2+x3+⋯+xn−1)−(3n−2)xnS(1-x) = 1 + 3(x + x^2 + x^3 + \dots + x^{n-1}) - (3n-2)x^{n}S(1−x)=1+3(x+x2+x3+⋯+xn−1)−(3n−2)xn等比数列の和の公式を用いて、括弧の中を計算します。x+x2+x3+⋯+xn−1=x(1−xn−1)1−xx + x^2 + x^3 + \dots + x^{n-1} = \frac{x(1-x^{n-1})}{1-x}x+x2+x3+⋯+xn−1=1−xx(1−xn−1)これを S(1−x)S(1-x)S(1−x) の式に代入します。S(1−x)=1+3x(1−xn−1)1−x−(3n−2)xnS(1-x) = 1 + 3\frac{x(1-x^{n-1})}{1-x} - (3n-2)x^{n}S(1−x)=1+31−xx(1−xn−1)−(3n−2)xnS(1−x)=1−x+3x(1−xn−1)−(3n−2)xn(1−x)1−xS(1-x) = \frac{1-x+3x(1-x^{n-1})-(3n-2)x^{n}(1-x)}{1-x}S(1−x)=1−x1−x+3x(1−xn−1)−(3n−2)xn(1−x)S(1−x)=1−x+3x−3xn−(3n−2)xn+(3n−2)xn+11−xS(1-x) = \frac{1-x+3x-3x^{n}-(3n-2)x^{n}+(3n-2)x^{n+1}}{1-x}S(1−x)=1−x1−x+3x−3xn−(3n−2)xn+(3n−2)xn+1S(1−x)=1+2x−3xn−3nxn+2xn+3nxn+1−2xn+11−xS(1-x) = \frac{1+2x-3x^{n}-3nx^{n}+2x^{n}+3nx^{n+1}-2x^{n+1}}{1-x}S(1−x)=1−x1+2x−3xn−3nxn+2xn+3nxn+1−2xn+1S(1−x)=1+2x−xn−3nxn+3nxn+1−2xn+11−xS(1-x) = \frac{1+2x-x^{n}-3nx^{n}+3nx^{n+1}-2x^{n+1}}{1-x}S(1−x)=1−x1+2x−xn−3nxn+3nxn+1−2xn+1S=1+2x−xn−3nxn+3nxn+1−2xn+1(1−x)2S = \frac{1+2x-x^{n}-3nx^{n}+3nx^{n+1}-2x^{n+1}}{(1-x)^{2}}S=(1−x)21+2x−xn−3nxn+3nxn+1−2xn+13. 最終的な答えS=1+2x−xn−3nxn+3nxn+1−2xn+1(1−x)2S = \frac{1+2x-x^{n}-3nx^{n}+3nx^{n+1}-2x^{n+1}}{(1-x)^{2}}S=(1−x)21+2x−xn−3nxn+3nxn+1−2xn+1あるいはS=1+2x−(3n−2)xn+(3n−2)xn+1−2xn+1(1−x)2S = \frac{1+2x-(3n-2)x^n + (3n-2)x^{n+1}-2x^{n+1}}{(1-x)^{2}}S=(1−x)21+2x−(3n−2)xn+(3n−2)xn+1−2xn+1