次の定積分を計算します。 $\int_{1}^{2} \log(\frac{x+1}{2x}) dx$解析学定積分対数関数部分積分2025/5/141. 問題の内容次の定積分を計算します。∫12log(x+12x)dx\int_{1}^{2} \log(\frac{x+1}{2x}) dx∫12log(2xx+1)dx2. 解き方の手順まず、対数の性質を使って積分を分解します。∫12log(x+12x)dx=∫12[log(x+1)−log(2x)]dx=∫12log(x+1)dx−∫12log(2x)dx\int_{1}^{2} \log(\frac{x+1}{2x}) dx = \int_{1}^{2} [\log(x+1) - \log(2x)] dx = \int_{1}^{2} \log(x+1) dx - \int_{1}^{2} \log(2x) dx∫12log(2xx+1)dx=∫12[log(x+1)−log(2x)]dx=∫12log(x+1)dx−∫12log(2x)dxここで、∫12log(2x)dx=∫12[log2+logx]dx=∫12log2dx+∫12logxdx\int_{1}^{2} \log(2x) dx = \int_{1}^{2} [\log 2 + \log x] dx = \int_{1}^{2} \log 2 dx + \int_{1}^{2} \log x dx∫12log(2x)dx=∫12[log2+logx]dx=∫12log2dx+∫12logxdxよって、∫12log(x+12x)dx=∫12log(x+1)dx−∫12log2dx−∫12logxdx\int_{1}^{2} \log(\frac{x+1}{2x}) dx = \int_{1}^{2} \log(x+1) dx - \int_{1}^{2} \log 2 dx - \int_{1}^{2} \log x dx∫12log(2xx+1)dx=∫12log(x+1)dx−∫12log2dx−∫12logxdxそれぞれの積分を計算します。∫12log(x+1)dx\int_{1}^{2} \log(x+1) dx∫12log(x+1)dx:部分積分を用いて計算します。u=log(x+1)u = \log(x+1)u=log(x+1), dv=dxdv = dxdv=dx とすると、du=1x+1dxdu = \frac{1}{x+1} dxdu=x+11dx, v=xv = xv=x となります。∫log(x+1)dx=xlog(x+1)−∫xx+1dx=xlog(x+1)−∫(1−1x+1)dx=xlog(x+1)−x+log(x+1)=(x+1)log(x+1)−x\int \log(x+1) dx = x\log(x+1) - \int \frac{x}{x+1} dx = x\log(x+1) - \int (1 - \frac{1}{x+1}) dx = x\log(x+1) - x + \log(x+1) = (x+1)\log(x+1) - x∫log(x+1)dx=xlog(x+1)−∫x+1xdx=xlog(x+1)−∫(1−x+11)dx=xlog(x+1)−x+log(x+1)=(x+1)log(x+1)−xしたがって、∫12log(x+1)dx=[(x+1)log(x+1)−x]12=[3log3−2]−[2log2−1]=3log3−2log2−1\int_{1}^{2} \log(x+1) dx = [(x+1)\log(x+1) - x]_{1}^{2} = [3\log 3 - 2] - [2\log 2 - 1] = 3\log 3 - 2\log 2 - 1∫12log(x+1)dx=[(x+1)log(x+1)−x]12=[3log3−2]−[2log2−1]=3log3−2log2−1∫12logxdx\int_{1}^{2} \log x dx∫12logxdx:部分積分を用いて計算します。u=logxu = \log xu=logx, dv=dxdv = dxdv=dx とすると、du=1xdxdu = \frac{1}{x} dxdu=x1dx, v=xv = xv=x となります。∫logxdx=xlogx−∫x1xdx=xlogx−∫1dx=xlogx−x\int \log x dx = x\log x - \int x\frac{1}{x} dx = x\log x - \int 1 dx = x\log x - x∫logxdx=xlogx−∫xx1dx=xlogx−∫1dx=xlogx−xしたがって、∫12logxdx=[xlogx−x]12=[2log2−2]−[log1−1]=2log2−2−0+1=2log2−1\int_{1}^{2} \log x dx = [x\log x - x]_{1}^{2} = [2\log 2 - 2] - [\log 1 - 1] = 2\log 2 - 2 - 0 + 1 = 2\log 2 - 1∫12logxdx=[xlogx−x]12=[2log2−2]−[log1−1]=2log2−2−0+1=2log2−1∫12log2dx=[log2⋅x]12=2log2−log2=log2\int_{1}^{2} \log 2 dx = [\log 2 \cdot x]_{1}^{2} = 2\log 2 - \log 2 = \log 2∫12log2dx=[log2⋅x]12=2log2−log2=log2よって、∫12log(x+12x)dx=(3log3−2log2−1)−log2−(2log2−1)=3log3−5log2\int_{1}^{2} \log(\frac{x+1}{2x}) dx = (3\log 3 - 2\log 2 - 1) - \log 2 - (2\log 2 - 1) = 3\log 3 - 5\log 2∫12log(2xx+1)dx=(3log3−2log2−1)−log2−(2log2−1)=3log3−5log23. 最終的な答え3log3−5log23\log 3 - 5\log 23log3−5log2