与えられた式 $x^3(y-z) + y^3(z-x) + z^3(x-y)$ を因数分解する。

代数学因数分解多項式対称式
2025/5/18

1. 問題の内容

与えられた式 x3(yz)+y3(zx)+z3(xy)x^3(y-z) + y^3(z-x) + z^3(x-y) を因数分解する。

2. 解き方の手順

まず、与式を展開します。
x3(yz)+y3(zx)+z3(xy)=x3yx3z+y3zy3x+z3xz3yx^3(y-z) + y^3(z-x) + z^3(x-y) = x^3y - x^3z + y^3z - y^3x + z^3x - z^3y
次に、xx について整理します。
x3(yz)x(y3z3)+y3zz3y=x3(yz)x(yz)(y2+yz+z2)+yz(y2z2)x^3(y-z) - x(y^3 - z^3) + y^3z - z^3y = x^3(y-z) - x(y-z)(y^2 + yz + z^2) + yz(y^2 - z^2)
さらに、yzy-z を共通因数としてくくりだします。
(yz)[x3x(y2+yz+z2)+yz(y+z)]=(yz)[x3xy2xyzxz2+y2z+yz2](y-z)[x^3 - x(y^2 + yz + z^2) + yz(y+z)] = (y-z)[x^3 - xy^2 - xyz - xz^2 + y^2z + yz^2]
次に、xx について降べきの順に整理します。
(yz)[x3x(y2+yz+z2)+yz(y+z)](y-z)[x^3 - x(y^2+yz+z^2) + yz(y+z)]
(yz)[x3xy2xyzxz2+y2z+yz2](y-z)[x^3 - xy^2 - xyz - xz^2 + y^2z + yz^2]
(yz)[x3xy2+y2zxyzxz2+yz2](y-z)[x^3 - xy^2 + y^2z - xyz - xz^2 + yz^2]
(yz)[x(x2y2)z(x2y2)zx(yz)](y-z)[x(x^2-y^2) - z(x^2-y^2) - zx(y-z)]
(yz)[x3x(y2+yz+z2)+yz(y+z)]=(yz)[x3xy2xyzxz2+y2z+yz2](y-z)[x^3 - x(y^2 + yz + z^2) + yz(y+z)] = (y-z)[x^3 - xy^2 - xyz - xz^2 + y^2z + yz^2]
=(yz)(xy)(x2+xy+y2)xz(xy)z2(xy)=(y-z)(x-y)(x^2+xy+y^2) - xz(x-y) - z^2(x-y)
(yz)[x3x(y2+yz+z2)+yz(y+z)](y-z)[x^3 - x(y^2 + yz + z^2) + yz(y+z)]
=(yz)[x3xy2xyzxz2+zy2+yz2]=(y-z)[x^3-xy^2-xyz-xz^2+zy^2+yz^2]
=(yz)[(xy)(x2+xy+y2)z(x2+xy+y2)zx(x+y)]=(y-z)[(x-y)(x^2+xy+y^2) - z(x^2+xy+y^2)-zx(x+y)]
=(yz)[x3x(y2+yz+z2)+yz(y+z)]=(y-z)[x^3 - x(y^2+yz+z^2) + yz(y+z)]
=(yz)[x3xy2xyzxz2+y2z+yz2]=(y-z)[x^3 - xy^2 - xyz - xz^2 + y^2z + yz^2]
=(yz)[(x3xy2)z(xy+xzy2yz)]=(y-z)[(x^3-xy^2) - z(xy+xz-y^2-yz)]
=(yz)[x(x2y2)z(xy)(x+y)]=(y-z)[x(x^2-y^2) - z(x-y)(x+y)]
=(yz)(xy)[x2+xy+zy+yz]=(y-z)(x-y)[x^2+xy +zy +yz]
=(yz)[(xy)(x2+xy)+z(y2x2xyxz+zy)]=(yz)(xy)(zx)(x+y+z+x)=(y-z)[(x-y)(x^2+xy)+z(y^2-x^2-xy-xz+zy)] = (y-z)(x-y)(z-x)(x+y+z+x)
x3(yz)+y3(zx)+z3(xy)=(xy)(yz)(zx)(x+y+z)x^3(y-z) + y^3(z-x) + z^3(x-y) = -(x-y)(y-z)(z-x)(x+y+z)

3. 最終的な答え

(xy)(yz)(zx)(x+y+z)-(x-y)(y-z)(z-x)(x+y+z)