与えられた式 $x^3(y-z) + y^3(z-x) + z^3(x-y)$ を因数分解する。代数学因数分解多項式対称式2025/5/181. 問題の内容与えられた式 x3(y−z)+y3(z−x)+z3(x−y)x^3(y-z) + y^3(z-x) + z^3(x-y)x3(y−z)+y3(z−x)+z3(x−y) を因数分解する。2. 解き方の手順まず、与式を展開します。x3(y−z)+y3(z−x)+z3(x−y)=x3y−x3z+y3z−y3x+z3x−z3yx^3(y-z) + y^3(z-x) + z^3(x-y) = x^3y - x^3z + y^3z - y^3x + z^3x - z^3yx3(y−z)+y3(z−x)+z3(x−y)=x3y−x3z+y3z−y3x+z3x−z3y次に、xxx について整理します。x3(y−z)−x(y3−z3)+y3z−z3y=x3(y−z)−x(y−z)(y2+yz+z2)+yz(y2−z2)x^3(y-z) - x(y^3 - z^3) + y^3z - z^3y = x^3(y-z) - x(y-z)(y^2 + yz + z^2) + yz(y^2 - z^2)x3(y−z)−x(y3−z3)+y3z−z3y=x3(y−z)−x(y−z)(y2+yz+z2)+yz(y2−z2)さらに、y−zy-zy−z を共通因数としてくくりだします。(y−z)[x3−x(y2+yz+z2)+yz(y+z)]=(y−z)[x3−xy2−xyz−xz2+y2z+yz2](y-z)[x^3 - x(y^2 + yz + z^2) + yz(y+z)] = (y-z)[x^3 - xy^2 - xyz - xz^2 + y^2z + yz^2](y−z)[x3−x(y2+yz+z2)+yz(y+z)]=(y−z)[x3−xy2−xyz−xz2+y2z+yz2]次に、xxx について降べきの順に整理します。(y−z)[x3−x(y2+yz+z2)+yz(y+z)](y-z)[x^3 - x(y^2+yz+z^2) + yz(y+z)](y−z)[x3−x(y2+yz+z2)+yz(y+z)](y−z)[x3−xy2−xyz−xz2+y2z+yz2](y-z)[x^3 - xy^2 - xyz - xz^2 + y^2z + yz^2](y−z)[x3−xy2−xyz−xz2+y2z+yz2](y−z)[x3−xy2+y2z−xyz−xz2+yz2](y-z)[x^3 - xy^2 + y^2z - xyz - xz^2 + yz^2](y−z)[x3−xy2+y2z−xyz−xz2+yz2](y−z)[x(x2−y2)−z(x2−y2)−zx(y−z)](y-z)[x(x^2-y^2) - z(x^2-y^2) - zx(y-z)](y−z)[x(x2−y2)−z(x2−y2)−zx(y−z)](y−z)[x3−x(y2+yz+z2)+yz(y+z)]=(y−z)[x3−xy2−xyz−xz2+y2z+yz2](y-z)[x^3 - x(y^2 + yz + z^2) + yz(y+z)] = (y-z)[x^3 - xy^2 - xyz - xz^2 + y^2z + yz^2](y−z)[x3−x(y2+yz+z2)+yz(y+z)]=(y−z)[x3−xy2−xyz−xz2+y2z+yz2]=(y−z)(x−y)(x2+xy+y2)−xz(x−y)−z2(x−y)=(y-z)(x-y)(x^2+xy+y^2) - xz(x-y) - z^2(x-y)=(y−z)(x−y)(x2+xy+y2)−xz(x−y)−z2(x−y)(y−z)[x3−x(y2+yz+z2)+yz(y+z)](y-z)[x^3 - x(y^2 + yz + z^2) + yz(y+z)](y−z)[x3−x(y2+yz+z2)+yz(y+z)]=(y−z)[x3−xy2−xyz−xz2+zy2+yz2]=(y-z)[x^3-xy^2-xyz-xz^2+zy^2+yz^2]=(y−z)[x3−xy2−xyz−xz2+zy2+yz2]=(y−z)[(x−y)(x2+xy+y2)−z(x2+xy+y2)−zx(x+y)]=(y-z)[(x-y)(x^2+xy+y^2) - z(x^2+xy+y^2)-zx(x+y)]=(y−z)[(x−y)(x2+xy+y2)−z(x2+xy+y2)−zx(x+y)]=(y−z)[x3−x(y2+yz+z2)+yz(y+z)]=(y-z)[x^3 - x(y^2+yz+z^2) + yz(y+z)]=(y−z)[x3−x(y2+yz+z2)+yz(y+z)]=(y−z)[x3−xy2−xyz−xz2+y2z+yz2]=(y-z)[x^3 - xy^2 - xyz - xz^2 + y^2z + yz^2]=(y−z)[x3−xy2−xyz−xz2+y2z+yz2]=(y−z)[(x3−xy2)−z(xy+xz−y2−yz)]=(y-z)[(x^3-xy^2) - z(xy+xz-y^2-yz)]=(y−z)[(x3−xy2)−z(xy+xz−y2−yz)]=(y−z)[x(x2−y2)−z(x−y)(x+y)]=(y-z)[x(x^2-y^2) - z(x-y)(x+y)]=(y−z)[x(x2−y2)−z(x−y)(x+y)]=(y−z)(x−y)[x2+xy+zy+yz]=(y-z)(x-y)[x^2+xy +zy +yz]=(y−z)(x−y)[x2+xy+zy+yz]=(y−z)[(x−y)(x2+xy)+z(y2−x2−xy−xz+zy)]=(y−z)(x−y)(z−x)(x+y+z+x)=(y-z)[(x-y)(x^2+xy)+z(y^2-x^2-xy-xz+zy)] = (y-z)(x-y)(z-x)(x+y+z+x)=(y−z)[(x−y)(x2+xy)+z(y2−x2−xy−xz+zy)]=(y−z)(x−y)(z−x)(x+y+z+x)x3(y−z)+y3(z−x)+z3(x−y)=−(x−y)(y−z)(z−x)(x+y+z)x^3(y-z) + y^3(z-x) + z^3(x-y) = -(x-y)(y-z)(z-x)(x+y+z)x3(y−z)+y3(z−x)+z3(x−y)=−(x−y)(y−z)(z−x)(x+y+z)3. 最終的な答え−(x−y)(y−z)(z−x)(x+y+z)-(x-y)(y-z)(z-x)(x+y+z)−(x−y)(y−z)(z−x)(x+y+z)