## 1. 問題の内容代数学式の計算分母の有理化平方根計算2025/5/18##1. 問題の内容与えられた数式を計算せよ。ここでは、(3)、(4)、(5)の問題を解きます。(3) 52+3+553+8\frac{\sqrt{5}}{\sqrt{2}+\sqrt{3}} + \frac{5\sqrt{5}}{\sqrt{3}+\sqrt{8}}2+35+3+855(4) 5−15+3−5+35−1\frac{\sqrt{5}-1}{\sqrt{5}+3} - \frac{\sqrt{5}+3}{\sqrt{5}-1}5+35−1−5−15+3(5) 12−3−13−2+12−1\frac{1}{2-\sqrt{3}} - \frac{1}{\sqrt{3}-\sqrt{2}} + \frac{1}{\sqrt{2}-1}2−31−3−21+2−11##2. 解き方の手順### (3) の解き方分母の有理化を行います。52+3=5(2−3)(2+3)(2−3)=10−152−3=10−15−1=15−10\frac{\sqrt{5}}{\sqrt{2}+\sqrt{3}} = \frac{\sqrt{5}(\sqrt{2}-\sqrt{3})}{(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})} = \frac{\sqrt{10}-\sqrt{15}}{2-3} = \frac{\sqrt{10}-\sqrt{15}}{-1} = \sqrt{15}-\sqrt{10}2+35=(2+3)(2−3)5(2−3)=2−310−15=−110−15=15−10553+8=55(3−8)(3+8)(3−8)=515−5403−8=515−5×210−5=515−1010−5=−15+210\frac{5\sqrt{5}}{\sqrt{3}+\sqrt{8}} = \frac{5\sqrt{5}(\sqrt{3}-\sqrt{8})}{(\sqrt{3}+\sqrt{8})(\sqrt{3}-\sqrt{8})} = \frac{5\sqrt{15}-5\sqrt{40}}{3-8} = \frac{5\sqrt{15}-5 \times 2\sqrt{10}}{-5} = \frac{5\sqrt{15}-10\sqrt{10}}{-5} = -\sqrt{15} + 2\sqrt{10}3+855=(3+8)(3−8)55(3−8)=3−8515−540=−5515−5×210=−5515−1010=−15+210よって、52+3+553+8=(15−10)+(−15+210)=10\frac{\sqrt{5}}{\sqrt{2}+\sqrt{3}} + \frac{5\sqrt{5}}{\sqrt{3}+\sqrt{8}} = (\sqrt{15}-\sqrt{10}) + (-\sqrt{15} + 2\sqrt{10}) = \sqrt{10}2+35+3+855=(15−10)+(−15+210)=10### (4) の解き方通分して計算します。5−15+3−5+35−1=(5−1)2−(5+3)2(5+3)(5−1)=(5−25+1)−(5+65+9)5+35−5−3=6−25−14−652+25=−8−852+25=−8(1+5)2(1+5)=−4\frac{\sqrt{5}-1}{\sqrt{5}+3} - \frac{\sqrt{5}+3}{\sqrt{5}-1} = \frac{(\sqrt{5}-1)^2 - (\sqrt{5}+3)^2}{(\sqrt{5}+3)(\sqrt{5}-1)} = \frac{(5 - 2\sqrt{5} + 1) - (5 + 6\sqrt{5} + 9)}{5 + 3\sqrt{5} - \sqrt{5} - 3} = \frac{6 - 2\sqrt{5} - 14 - 6\sqrt{5}}{2 + 2\sqrt{5}} = \frac{-8 - 8\sqrt{5}}{2 + 2\sqrt{5}} = \frac{-8(1+\sqrt{5})}{2(1+\sqrt{5})} = -45+35−1−5−15+3=(5+3)(5−1)(5−1)2−(5+3)2=5+35−5−3(5−25+1)−(5+65+9)=2+256−25−14−65=2+25−8−85=2(1+5)−8(1+5)=−4### (5) の解き方分母の有理化を行います。12−3=2+3(2−3)(2+3)=2+34−3=2+3\frac{1}{2-\sqrt{3}} = \frac{2+\sqrt{3}}{(2-\sqrt{3})(2+\sqrt{3})} = \frac{2+\sqrt{3}}{4-3} = 2+\sqrt{3}2−31=(2−3)(2+3)2+3=4−32+3=2+313−2=3+2(3−2)(3+2)=3+23−2=3+2\frac{1}{\sqrt{3}-\sqrt{2}} = \frac{\sqrt{3}+\sqrt{2}}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})} = \frac{\sqrt{3}+\sqrt{2}}{3-2} = \sqrt{3}+\sqrt{2}3−21=(3−2)(3+2)3+2=3−23+2=3+212−1=2+1(2−1)(2+1)=2+12−1=2+1\frac{1}{\sqrt{2}-1} = \frac{\sqrt{2}+1}{(\sqrt{2}-1)(\sqrt{2}+1)} = \frac{\sqrt{2}+1}{2-1} = \sqrt{2}+12−11=(2−1)(2+1)2+1=2−12+1=2+1よって、12−3−13−2+12−1=(2+3)−(3+2)+(2+1)=2+3−3−2+2+1=3\frac{1}{2-\sqrt{3}} - \frac{1}{\sqrt{3}-\sqrt{2}} + \frac{1}{\sqrt{2}-1} = (2+\sqrt{3}) - (\sqrt{3}+\sqrt{2}) + (\sqrt{2}+1) = 2+\sqrt{3}-\sqrt{3}-\sqrt{2}+\sqrt{2}+1 = 32−31−3−21+2−11=(2+3)−(3+2)+(2+1)=2+3−3−2+2+1=3##3. 最終的な答え(3) 10\sqrt{10}10(4) −4-4−4(5) 333