数列 $\{a_n\}$ が $a_1 = 5$ および漸化式 $na_{n+1} = (n+1)a_n + 2$ で定義されるとき、一般項 $a_n$ を求める。代数学数列漸化式一般項2025/5/181. 問題の内容数列 {an}\{a_n\}{an} が a1=5a_1 = 5a1=5 および漸化式 nan+1=(n+1)an+2na_{n+1} = (n+1)a_n + 2nan+1=(n+1)an+2 で定義されるとき、一般項 ana_nan を求める。2. 解き方の手順与えられた漸化式を nnn で割ると、an+1=n+1nan+2na_{n+1} = \frac{n+1}{n} a_n + \frac{2}{n}an+1=nn+1an+n2両辺に n(n+1)n(n+1)n(n+1)をかけると、n(n+1)an+1=(n+1)2an+2(n+1)n(n+1)a_{n+1} = (n+1)^2 a_n + 2(n+1)n(n+1)an+1=(n+1)2an+2(n+1)ここで、bn=n(n+1)anb_n = n(n+1)a_nbn=n(n+1)an とおくと、b1=1(1+1)a1=2⋅5=10b_1 = 1(1+1)a_1 = 2 \cdot 5 = 10b1=1(1+1)a1=2⋅5=10 となり、bn+1=(n+1)an+1(n+2)b_{n+1} = (n+1)a_{n+1}(n+2)bn+1=(n+1)an+1(n+2)元の式からbn+1=bn+2(n+1)b_{n+1} = b_n + 2(n+1)bn+1=bn+2(n+1)数列{bn}\{b_n\}{bn}の階差数列は2(n+1)2(n+1)2(n+1)であるから、n≥2n \ge 2n≥2のときbn=b1+∑k=1n−12(k+1)=10+2∑k=1n−1(k+1)=10+2(∑k=1n−1k+∑k=1n−11)b_n = b_1 + \sum_{k=1}^{n-1} 2(k+1) = 10 + 2 \sum_{k=1}^{n-1} (k+1) = 10 + 2 (\sum_{k=1}^{n-1} k + \sum_{k=1}^{n-1} 1)bn=b1+∑k=1n−12(k+1)=10+2∑k=1n−1(k+1)=10+2(∑k=1n−1k+∑k=1n−11)=10+2((n−1)n2+(n−1))=10+n(n−1)+2(n−1)=10+n2−n+2n−2=n2+n+8= 10 + 2(\frac{(n-1)n}{2} + (n-1)) = 10 + n(n-1) + 2(n-1) = 10 + n^2 - n + 2n - 2 = n^2 + n + 8=10+2(2(n−1)n+(n−1))=10+n(n−1)+2(n−1)=10+n2−n+2n−2=n2+n+8n=1n=1n=1のとき、b1=12+1+8=10b_1 = 1^2 + 1 + 8 = 10b1=12+1+8=10となるので、bn=n2+n+8b_n = n^2 + n + 8bn=n2+n+8はn=1n=1n=1のときも成り立つ。したがって、an=bnn(n+1)=n2+n+8n(n+1)=n(n+1)+8n(n+1)=1+8n(n+1)=1+8(1n−1n+1)a_n = \frac{b_n}{n(n+1)} = \frac{n^2 + n + 8}{n(n+1)} = \frac{n(n+1) + 8}{n(n+1)} = 1 + \frac{8}{n(n+1)} = 1 + 8(\frac{1}{n} - \frac{1}{n+1})an=n(n+1)bn=n(n+1)n2+n+8=n(n+1)n(n+1)+8=1+n(n+1)8=1+8(n1−n+11)3. 最終的な答えan=1+8n(n+1)a_n = 1 + \frac{8}{n(n+1)}an=1+n(n+1)8