$x = \frac{1}{1+\sqrt{2}+\sqrt{3}}$、 $y = \frac{1}{1+\sqrt{2}-\sqrt{3}}$ のとき、$\frac{1}{x+y}$ の値を求めよ。代数学式の計算有理化平方根2025/5/181. 問題の内容x=11+2+3x = \frac{1}{1+\sqrt{2}+\sqrt{3}}x=1+2+31、 y=11+2−3y = \frac{1}{1+\sqrt{2}-\sqrt{3}}y=1+2−31 のとき、1x+y\frac{1}{x+y}x+y1 の値を求めよ。2. 解き方の手順まず、x+yx+yx+y を計算する。x+y=11+2+3+11+2−3x+y = \frac{1}{1+\sqrt{2}+\sqrt{3}} + \frac{1}{1+\sqrt{2}-\sqrt{3}}x+y=1+2+31+1+2−31x+y=(1+2−3)+(1+2+3)(1+2+3)(1+2−3)x+y = \frac{(1+\sqrt{2}-\sqrt{3}) + (1+\sqrt{2}+\sqrt{3})}{(1+\sqrt{2}+\sqrt{3})(1+\sqrt{2}-\sqrt{3})}x+y=(1+2+3)(1+2−3)(1+2−3)+(1+2+3)x+y=2(1+2)(1+2)2−(3)2x+y = \frac{2(1+\sqrt{2})}{(1+\sqrt{2})^2 - (\sqrt{3})^2}x+y=(1+2)2−(3)22(1+2)x+y=2(1+2)1+22+2−3x+y = \frac{2(1+\sqrt{2})}{1+2\sqrt{2}+2 - 3}x+y=1+22+2−32(1+2)x+y=2(1+2)22x+y = \frac{2(1+\sqrt{2})}{2\sqrt{2}}x+y=222(1+2)x+y=1+22x+y = \frac{1+\sqrt{2}}{\sqrt{2}}x+y=21+2x+y=(1+2)22x+y = \frac{(1+\sqrt{2})\sqrt{2}}{2}x+y=2(1+2)2x+y=2+22x+y = \frac{\sqrt{2}+2}{2}x+y=22+2次に、1x+y\frac{1}{x+y}x+y1 を計算する。1x+y=12+22\frac{1}{x+y} = \frac{1}{\frac{\sqrt{2}+2}{2}}x+y1=22+211x+y=22+2\frac{1}{x+y} = \frac{2}{\sqrt{2}+2}x+y1=2+221x+y=2(2−2)(2+2)(2−2)\frac{1}{x+y} = \frac{2(2-\sqrt{2})}{(2+\sqrt{2})(2-\sqrt{2})}x+y1=(2+2)(2−2)2(2−2)1x+y=2(2−2)4−2\frac{1}{x+y} = \frac{2(2-\sqrt{2})}{4-2}x+y1=4−22(2−2)1x+y=2(2−2)2\frac{1}{x+y} = \frac{2(2-\sqrt{2})}{2}x+y1=22(2−2)1x+y=2−2\frac{1}{x+y} = 2-\sqrt{2}x+y1=2−23. 最終的な答え1x+y=2−2\frac{1}{x+y} = 2 - \sqrt{2}x+y1=2−2