$\sum_{k=1}^{n} (k+1)(k-2)$ を計算します。代数学数列シグマ展開公式2025/5/181. 問題の内容∑k=1n(k+1)(k−2)\sum_{k=1}^{n} (k+1)(k-2)∑k=1n(k+1)(k−2) を計算します。2. 解き方の手順まず、(k+1)(k−2)(k+1)(k-2)(k+1)(k−2) を展開します。(k+1)(k−2)=k2−2k+k−2=k2−k−2(k+1)(k-2) = k^2 - 2k + k - 2 = k^2 - k - 2(k+1)(k−2)=k2−2k+k−2=k2−k−2したがって、∑k=1n(k+1)(k−2)=∑k=1n(k2−k−2)\sum_{k=1}^{n} (k+1)(k-2) = \sum_{k=1}^{n} (k^2 - k - 2)∑k=1n(k+1)(k−2)=∑k=1n(k2−k−2)和の性質より、∑k=1n(k2−k−2)=∑k=1nk2−∑k=1nk−∑k=1n2\sum_{k=1}^{n} (k^2 - k - 2) = \sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} k - \sum_{k=1}^{n} 2∑k=1n(k2−k−2)=∑k=1nk2−∑k=1nk−∑k=1n2∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n2=2n\sum_{k=1}^{n} 2 = 2n∑k=1n2=2nしたがって、∑k=1n(k2−k−2)=n(n+1)(2n+1)6−n(n+1)2−2n\sum_{k=1}^{n} (k^2 - k - 2) = \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} - 2n∑k=1n(k2−k−2)=6n(n+1)(2n+1)−2n(n+1)−2n=n(n+1)(2n+1)−3n(n+1)−12n6= \frac{n(n+1)(2n+1) - 3n(n+1) - 12n}{6}=6n(n+1)(2n+1)−3n(n+1)−12n=n[(n+1)(2n+1)−3(n+1)−12]6= \frac{n[(n+1)(2n+1) - 3(n+1) - 12]}{6}=6n[(n+1)(2n+1)−3(n+1)−12]=n[2n2+3n+1−3n−3−12]6= \frac{n[2n^2 + 3n + 1 - 3n - 3 - 12]}{6}=6n[2n2+3n+1−3n−3−12]=n(2n2−14)6= \frac{n(2n^2 - 14)}{6}=6n(2n2−14)=2n(n2−7)6= \frac{2n(n^2 - 7)}{6}=62n(n2−7)=n(n2−7)3= \frac{n(n^2 - 7)}{3}=3n(n2−7)3. 最終的な答えn(n2−7)3\frac{n(n^2 - 7)}{3}3n(n2−7)