(1) $(1+i)^{12}$を計算せよ。 (2) $(-\sqrt{3}+i)^{-4}$を計算せよ。代数学複素数極形式ド・モアブルの定理複素数の計算2025/5/181. 問題の内容(1) (1+i)12(1+i)^{12}(1+i)12を計算せよ。(2) (−3+i)−4(-\sqrt{3}+i)^{-4}(−3+i)−4を計算せよ。2. 解き方の手順(1) 1+i1+i1+iを極形式で表す。r=12+12=2r = \sqrt{1^2 + 1^2} = \sqrt{2}r=12+12=2θ=arctan(11)=π4\theta = \arctan(\frac{1}{1}) = \frac{\pi}{4}θ=arctan(11)=4πしたがって、1+i=2(cos(π4)+isin(π4))1+i = \sqrt{2}(\cos(\frac{\pi}{4})+i\sin(\frac{\pi}{4}))1+i=2(cos(4π)+isin(4π))ド・モアブルの定理より、(1+i)12=(2)12(cos(12π4)+isin(12π4))=26(cos(3π)+isin(3π))=64(−1+0i)=−64(1+i)^{12} = (\sqrt{2})^{12}(\cos(\frac{12\pi}{4})+i\sin(\frac{12\pi}{4})) = 2^6(\cos(3\pi)+i\sin(3\pi)) = 64(-1+0i) = -64(1+i)12=(2)12(cos(412π)+isin(412π))=26(cos(3π)+isin(3π))=64(−1+0i)=−64(2) −3+i-\sqrt{3}+i−3+iを極形式で表す。r=(−3)2+12=3+1=2r = \sqrt{(-\sqrt{3})^2 + 1^2} = \sqrt{3+1} = 2r=(−3)2+12=3+1=2θ=arctan(1−3)=5π6\theta = \arctan(\frac{1}{-\sqrt{3}}) = \frac{5\pi}{6}θ=arctan(−31)=65πしたがって、−3+i=2(cos(5π6)+isin(5π6))-\sqrt{3}+i = 2(\cos(\frac{5\pi}{6})+i\sin(\frac{5\pi}{6}))−3+i=2(cos(65π)+isin(65π))ド・モアブルの定理より、(−3+i)−4=2−4(cos(−20π6)+isin(−20π6))=116(cos(−10π3)+isin(−10π3))=116(cos(2π3)+isin(2π3))=116(−12+i32)=−132+i332(-\sqrt{3}+i)^{-4} = 2^{-4}(\cos(\frac{-20\pi}{6})+i\sin(\frac{-20\pi}{6})) = \frac{1}{16}(\cos(\frac{-10\pi}{3})+i\sin(\frac{-10\pi}{3})) = \frac{1}{16}(\cos(\frac{2\pi}{3})+i\sin(\frac{2\pi}{3})) = \frac{1}{16}(-\frac{1}{2}+i\frac{\sqrt{3}}{2}) = -\frac{1}{32} + i\frac{\sqrt{3}}{32}(−3+i)−4=2−4(cos(6−20π)+isin(6−20π))=161(cos(3−10π)+isin(3−10π))=161(cos(32π)+isin(32π))=161(−21+i23)=−321+i3233. 最終的な答え(1) -64(2) −132+i332-\frac{1}{32} + i\frac{\sqrt{3}}{32}−321+i323