与えられた11個の式を展開する問題です。乗法公式を利用して計算します。代数学式の展開乗法公式多項式2025/5/181. 問題の内容与えられた11個の式を展開する問題です。乗法公式を利用して計算します。2. 解き方の手順各問題ごとに展開の手順を示します。(1) (x+3)(x+7)=x2+(3+7)x+3⋅7=x2+10x+21(x+3)(x+7) = x^2 + (3+7)x + 3 \cdot 7 = x^2 + 10x + 21(x+3)(x+7)=x2+(3+7)x+3⋅7=x2+10x+21(2) (x−4)(x−5)=x2+(−4−5)x+(−4)(−5)=x2−9x+20(x-4)(x-5) = x^2 + (-4-5)x + (-4)(-5) = x^2 - 9x + 20(x−4)(x−5)=x2+(−4−5)x+(−4)(−5)=x2−9x+20(3) (x+9)(x−10)=x2+(9−10)x+9(−10)=x2−x−90(x+9)(x-10) = x^2 + (9-10)x + 9(-10) = x^2 - x - 90(x+9)(x−10)=x2+(9−10)x+9(−10)=x2−x−90(4) (x−1)(x+6)=x2+(−1+6)x+(−1)(6)=x2+5x−6(x-1)(x+6) = x^2 + (-1+6)x + (-1)(6) = x^2 + 5x - 6(x−1)(x+6)=x2+(−1+6)x+(−1)(6)=x2+5x−6(5) (x+4)2=x2+2(4)x+42=x2+8x+16(x+4)^2 = x^2 + 2(4)x + 4^2 = x^2 + 8x + 16(x+4)2=x2+2(4)x+42=x2+8x+16(6) (x−10)2=x2−2(10)x+102=x2−20x+100(x-10)^2 = x^2 - 2(10)x + 10^2 = x^2 - 20x + 100(x−10)2=x2−2(10)x+102=x2−20x+100(7) (13x+13)2=(13)2(x+1)2=19(x2+2x+1)=19x2+29x+19(\frac{1}{3}x+\frac{1}{3})^2 = (\frac{1}{3})^2(x+1)^2 = \frac{1}{9}(x^2 + 2x + 1) = \frac{1}{9}x^2 + \frac{2}{9}x + \frac{1}{9}(31x+31)2=(31)2(x+1)2=91(x2+2x+1)=91x2+92x+91(8) (x+1)(x−1)=x2−12=x2−1(x+1)(x-1) = x^2 - 1^2 = x^2 - 1(x+1)(x−1)=x2−12=x2−1(9) (a−9)(a+9)=a2−92=a2−81(a-9)(a+9) = a^2 - 9^2 = a^2 - 81(a−9)(a+9)=a2−92=a2−81(10) (x+6)(6−x)=(6+x)(6−x)=62−x2=36−x2(x+6)(6-x) = (6+x)(6-x) = 6^2 - x^2 = 36 - x^2(x+6)(6−x)=(6+x)(6−x)=62−x2=36−x2(11) (x+54)(x−54)=x2−(54)2=x2−2516(x+\frac{5}{4})(x-\frac{5}{4}) = x^2 - (\frac{5}{4})^2 = x^2 - \frac{25}{16}(x+45)(x−45)=x2−(45)2=x2−16253. 最終的な答え(1) x2+10x+21x^2 + 10x + 21x2+10x+21(2) x2−9x+20x^2 - 9x + 20x2−9x+20(3) x2−x−90x^2 - x - 90x2−x−90(4) x2+5x−6x^2 + 5x - 6x2+5x−6(5) x2+8x+16x^2 + 8x + 16x2+8x+16(6) x2−20x+100x^2 - 20x + 100x2−20x+100(7) 19x2+29x+19\frac{1}{9}x^2 + \frac{2}{9}x + \frac{1}{9}91x2+92x+91(8) x2−1x^2 - 1x2−1(9) a2−81a^2 - 81a2−81(10) 36−x236 - x^236−x2(11) x2−2516x^2 - \frac{25}{16}x2−1625