与えられた4つの式(ア、イ、ウ、エ)の中から、整理すると2次式=0の形になる2次方程式を選び、正しい組み合わせを選択する問題です。

代数学二次方程式2次方程式方程式展開整理
2025/5/18

1. 問題の内容

与えられた4つの式(ア、イ、ウ、エ)の中から、整理すると2次式=0の形になる2次方程式を選び、正しい組み合わせを選択する問題です。

2. 解き方の手順

各方程式を整理して、2次方程式になるかどうかを確認します。
ア:(x+2)2=x2(x+2)^2 = x^2 を展開すると、x2+4x+4=x2x^2 + 4x + 4 = x^2 となります。両辺からx2x^2を引くと、4x+4=04x + 4 = 0 となり、これは1次方程式です。
イ:6x2=2x2+36x - 2 = -2x^2 + 3 を整理すると、2x2+6x5=02x^2 + 6x - 5 = 0 となります。これは2次方程式です。
ウ:0=5x+30 = 5x + 3 は、5x+3=05x + 3 = 0 となり、これは1次方程式です。
エ:(x+3)(x3)=x2(x+3)(x-3) = -x^2 を展開すると、x29=x2x^2 - 9 = -x^2 となります。これを整理すると、2x29=02x^2 - 9 = 0 となり、これは2次方程式です。
したがって、2次方程式はイとエです。

3. 最終的な答え

イとエ

「代数学」の関連問題

問題3:長方形の土地の中に、縦横に同じ幅の道路を通して4つの区画を作り、それぞれの区画の面積が63m²になったとき、道路の幅を求める問題です。土地の縦の長さは16m、横の長さは20mです。 問題4:縦...

二次方程式面積組み合わせ
2025/5/18

与えられた4つの式をそれぞれ簡単にせよ。 (1) $(\sqrt{3} - \sqrt{2} + 1)^3 (\sqrt{3} + \sqrt{2} - 1)^3$ (2) $\frac{1}{1 +...

式の計算平方根有理化絶対値
2025/5/18

与えられた式を計算し、簡略化します。問題の式は次の通りです。 $\frac{1}{1 + \frac{4x^2}{(1-x^2)^2}} \times \frac{1+x^2}{(1-x^2)^2}$

式の計算分数式因数分解約分式変形
2025/5/18

以下の4つの式を因数分解してください。 (1) $x^2 z - 2xyz - 3y^2 z - 2x^2 + 4xy + 6y^2$ (2) $2x^2 + 3xy + y^2 + 3x + y -...

因数分解多項式
2025/5/18

$\frac{2}{3} < x < \frac{3}{4}$ のとき、$\sqrt{9x^2 - 12x + 4} + \sqrt{x^2 + 4x + 4} - \sqrt{16x^2 - 24x...

絶対値因数分解不等式式の計算
2025/5/18

画像に写っている3つの数式をそれぞれ展開・計算して簡単にしてください。 (1) $(x^2+x+2)(x^2-x+2)$ (2) $(x^2+xy+y^2)(x^2+y^2)(x-y)^2(x+y)$...

展開多項式式変形
2025/5/18

与えられた3つの式を展開する問題です。 (1) $(x^2 + x + 2)(x^2 - x + 2)$ (2) $(x^2 + xy + y^2)(x^2 + y^2)(x - y)^2(x + y...

多項式の展開因数分解展開公式
2025/5/18

$\frac{\pi}{2} < \alpha < \pi$ で $\sin \alpha = \frac{3}{5}$ のとき、以下の値を求めよ。 (1) $\cos 2\alpha$ (2) $\...

三角関数加法定理倍角の公式半角の公式三角比
2025/5/18

数列の和 $S_n$ を求める問題です。$S_n$は、$\frac{10}{9}(10^n - 1)$ から $n$ を引き、さらに 9 で割ったものとして定義されます。つまり、$S_n$を数式で表す...

数列等比数列式変形
2025/5/18

(1) ベクトル $\vec{a}=(1, 2)$ と $\vec{b}=(k, 4)$ が与えられている。 - $\vec{a} - \vec{b}$ と $2\vec{b} - \vec{...

ベクトル内積空間ベクトル
2025/5/18