不等式 $2x - 3 > a + 8x$ について、次の問いに答える。 (1) 解が $x < 1$ となるように、定数 $a$ の値を定める。 (2) 解が $x = 0$ を含むように、定数 $a$ の値の範囲を定める。

代数学不等式一次不等式解の範囲
2025/5/18

1. 問題の内容

不等式 2x3>a+8x2x - 3 > a + 8x について、次の問いに答える。
(1) 解が x<1x < 1 となるように、定数 aa の値を定める。
(2) 解が x=0x = 0 を含むように、定数 aa の値の範囲を定める。

2. 解き方の手順

まず、与えられた不等式を xx について解く。
2x3>a+8x2x - 3 > a + 8x
6x>a+3-6x > a + 3
x<a+36x < -\frac{a+3}{6}
(1) 解が x<1x < 1 となるように aa の値を定める。
a+36=1-\frac{a+3}{6} = 1 となればよいので、
a3=6-a - 3 = 6
a=9-a = 9
a=9a = -9
(2) 解が x=0x = 0 を含むように aa の値の範囲を定める。
解が x<a+36x < -\frac{a+3}{6} であるから、x=0x = 0 を含むためには、a+36>0-\frac{a+3}{6} > 0 となれば良い。
a3>0-a - 3 > 0
a>3-a > 3
a<3a < -3

3. 最終的な答え

(1) a=9a = -9
(2) a<3a < -3

「代数学」の関連問題

問題3:長方形の土地の中に、縦横に同じ幅の道路を通して4つの区画を作り、それぞれの区画の面積が63m²になったとき、道路の幅を求める問題です。土地の縦の長さは16m、横の長さは20mです。 問題4:縦...

二次方程式面積組み合わせ
2025/5/18

与えられた4つの式をそれぞれ簡単にせよ。 (1) $(\sqrt{3} - \sqrt{2} + 1)^3 (\sqrt{3} + \sqrt{2} - 1)^3$ (2) $\frac{1}{1 +...

式の計算平方根有理化絶対値
2025/5/18

与えられた式を計算し、簡略化します。問題の式は次の通りです。 $\frac{1}{1 + \frac{4x^2}{(1-x^2)^2}} \times \frac{1+x^2}{(1-x^2)^2}$

式の計算分数式因数分解約分式変形
2025/5/18

以下の4つの式を因数分解してください。 (1) $x^2 z - 2xyz - 3y^2 z - 2x^2 + 4xy + 6y^2$ (2) $2x^2 + 3xy + y^2 + 3x + y -...

因数分解多項式
2025/5/18

$\frac{2}{3} < x < \frac{3}{4}$ のとき、$\sqrt{9x^2 - 12x + 4} + \sqrt{x^2 + 4x + 4} - \sqrt{16x^2 - 24x...

絶対値因数分解不等式式の計算
2025/5/18

画像に写っている3つの数式をそれぞれ展開・計算して簡単にしてください。 (1) $(x^2+x+2)(x^2-x+2)$ (2) $(x^2+xy+y^2)(x^2+y^2)(x-y)^2(x+y)$...

展開多項式式変形
2025/5/18

与えられた3つの式を展開する問題です。 (1) $(x^2 + x + 2)(x^2 - x + 2)$ (2) $(x^2 + xy + y^2)(x^2 + y^2)(x - y)^2(x + y...

多項式の展開因数分解展開公式
2025/5/18

$\frac{\pi}{2} < \alpha < \pi$ で $\sin \alpha = \frac{3}{5}$ のとき、以下の値を求めよ。 (1) $\cos 2\alpha$ (2) $\...

三角関数加法定理倍角の公式半角の公式三角比
2025/5/18

数列の和 $S_n$ を求める問題です。$S_n$は、$\frac{10}{9}(10^n - 1)$ から $n$ を引き、さらに 9 で割ったものとして定義されます。つまり、$S_n$を数式で表す...

数列等比数列式変形
2025/5/18

(1) ベクトル $\vec{a}=(1, 2)$ と $\vec{b}=(k, 4)$ が与えられている。 - $\vec{a} - \vec{b}$ と $2\vec{b} - \vec{...

ベクトル内積空間ベクトル
2025/5/18