不等式 $(\frac{1}{3})^{x+1} < 27$ の解を $x$ の不等式で表すとき、その不等号と整数値を求めよ。

代数学不等式指数関数指数不等式対数
2025/5/18

1. 問題の内容

不等式 (13)x+1<27(\frac{1}{3})^{x+1} < 27 の解を xx の不等式で表すとき、その不等号と整数値を求めよ。

2. 解き方の手順

まず、与えられた不等式を書き換えます。
(13)x+1<27(\frac{1}{3})^{x+1} < 27
底を3に揃えることを考えます。13=31\frac{1}{3} = 3^{-1} であり、27=3327 = 3^3 であるから、
(31)x+1<33(3^{-1})^{x+1} < 3^3
3(x+1)<333^{-(x+1)} < 3^3
底が1より大きいので、指数部分の大小関係は不等号の向きを変えずに比較できます。
(x+1)<3-(x+1) < 3
x1<3-x - 1 < 3
x<4-x < 4
x>4x > -4
したがって、x>4x > -4 となります。

3. 最終的な答え

エ: >
オ: -4

「代数学」の関連問題

与えられた式 $(a+b-c-d)(a-b-c+d)$ を展開し、簡単にしてください。

展開式変形多項式
2025/5/18

数列 $\{a_n\}$ の初項から第 $n$ 項までの和を $S_n$ とします。等差数列 $\{b_n\}$ は、第3項が5であり、初項から第10項までの和が100です。さらに、$S_n = b_...

数列等差数列和の公式シグマ
2025/5/18

問題3:長方形の土地の中に、縦横に同じ幅の道路を通して4つの区画を作り、それぞれの区画の面積が63m²になったとき、道路の幅を求める問題です。土地の縦の長さは16m、横の長さは20mです。 問題4:縦...

二次方程式面積組み合わせ
2025/5/18

与えられた4つの式をそれぞれ簡単にせよ。 (1) $(\sqrt{3} - \sqrt{2} + 1)^3 (\sqrt{3} + \sqrt{2} - 1)^3$ (2) $\frac{1}{1 +...

式の計算平方根有理化絶対値
2025/5/18

与えられた式を計算し、簡略化します。問題の式は次の通りです。 $\frac{1}{1 + \frac{4x^2}{(1-x^2)^2}} \times \frac{1+x^2}{(1-x^2)^2}$

式の計算分数式因数分解約分式変形
2025/5/18

以下の4つの式を因数分解してください。 (1) $x^2 z - 2xyz - 3y^2 z - 2x^2 + 4xy + 6y^2$ (2) $2x^2 + 3xy + y^2 + 3x + y -...

因数分解多項式
2025/5/18

$\frac{2}{3} < x < \frac{3}{4}$ のとき、$\sqrt{9x^2 - 12x + 4} + \sqrt{x^2 + 4x + 4} - \sqrt{16x^2 - 24x...

絶対値因数分解不等式式の計算
2025/5/18

画像に写っている3つの数式をそれぞれ展開・計算して簡単にしてください。 (1) $(x^2+x+2)(x^2-x+2)$ (2) $(x^2+xy+y^2)(x^2+y^2)(x-y)^2(x+y)$...

展開多項式式変形
2025/5/18

与えられた3つの式を展開する問題です。 (1) $(x^2 + x + 2)(x^2 - x + 2)$ (2) $(x^2 + xy + y^2)(x^2 + y^2)(x - y)^2(x + y...

多項式の展開因数分解展開公式
2025/5/18

$\frac{\pi}{2} < \alpha < \pi$ で $\sin \alpha = \frac{3}{5}$ のとき、以下の値を求めよ。 (1) $\cos 2\alpha$ (2) $\...

三角関数加法定理倍角の公式半角の公式三角比
2025/5/18