$\log_{\frac{1}{2}}(x+1) > 2$ の解を表す不等式を求め、$ [サ] \ [ケ] \ x \ [コ] \ \frac{[シ]}{[ス]}$ の形に当てはめる問題です。ここで、[ケ]と[コ]には不等号が入り、[サ]、[シ]、[ス]には整数が入ります。
2025/5/18
1. 問題の内容
の解を表す不等式を求め、 の形に当てはめる問題です。ここで、[ケ]と[コ]には不等号が入り、[サ]、[シ]、[ス]には整数が入ります。
2. 解き方の手順
まず、対数の定義から、 の範囲を考えます。
という不等式を解くために、まず である必要があります。
したがって、。
次に、対数の不等式を指数形式に変換します。底が であり、1より小さいので、不等号の向きが変わります。
したがって、不等式は となります。
この不等式を の形に当てはめると、
なので、
[サ] = -1
[ケ] = <
[コ] = <
[シ] = -3
[ス] = 4
3. 最終的な答え
-1 < x < -3/4