The problem consists of two exercises. Exercise 1 deals with sequences. A sequence $U_n$ is defined recursively as $U_0 = e$ and $U_{n+1} = \sqrt{U_n}$. Another sequence $V_n$ is defined as $V_n = \ln(U_n)$. We need to: 1) Calculate $U_1$, $V_0$, and $V_1$. 2) Show that $V_n$ is a geometric sequence and specify its common ratio and first term. 3) Express $V_n$ and $U_n$ as functions of $n$. 4) Express $S_n = V_0 + V_1 + ... + V_n$ as a function of $n$. 5) Express $P_n = U_0 \times U_1 \times ... \times U_n$ as a function of $n$. 6) Study the convergence of $V_n$, $U_n$, $S_n$, and $P_n$. Exercise 2 concerns a function $f(x) = \frac{-2(1+e^x)}{e^x-1}$. We need to: 1) Determine the domain of $f$. 2) Calculate the limits of $f$ at the boundaries of its domain and find the equations of any asymptotes. 3) Determine $f'(x)$ and construct the variation table of $f$. 4) Give the equation of the tangent to the curve $C_f$ at the point with abscissa $x = \ln 2$. 5) a) Determine the points of intersection of $C_f$ with the coordinate axes. b) Sketch the graph of $f$. 6) Let $g$ be the restriction of $f$ to the interval $I = ]-\infty, 0[$. a) Show that $g$ is a bijection from $I$ to an interval $J$ which should be specified. b) Calculate $g(\ln 2)$ and deduce $(g^{-1})'(-6)$. 7) a) Verify that for all $x$ in the domain of $f$, $f(x) = 2 - \frac{4e^x}{e^x-1}$. Deduce a primitive of $f$ on its domain. b) Calculate the area in $cm^2$ of the planar region bounded by $C_f$, the line $y = 2$, and the lines $x = -\ln 3$ and $x = -\ln 2$.

AnalysisSequencesLimitsFunctionsDerivativesIntegralsAsymptotesGeometric SequencesExponential FunctionsLogarithmsArea Calculation
2025/3/7

1. Problem Description

The problem consists of two exercises. Exercise 1 deals with sequences. A sequence UnU_n is defined recursively as U0=eU_0 = e and Un+1=UnU_{n+1} = \sqrt{U_n}. Another sequence VnV_n is defined as Vn=ln(Un)V_n = \ln(U_n). We need to:
1) Calculate U1U_1, V0V_0, and V1V_1.
2) Show that VnV_n is a geometric sequence and specify its common ratio and first term.
3) Express VnV_n and UnU_n as functions of nn.
4) Express Sn=V0+V1+...+VnS_n = V_0 + V_1 + ... + V_n as a function of nn.
5) Express Pn=U0×U1×...×UnP_n = U_0 \times U_1 \times ... \times U_n as a function of nn.
6) Study the convergence of VnV_n, UnU_n, SnS_n, and PnP_n.
Exercise 2 concerns a function f(x)=2(1+ex)ex1f(x) = \frac{-2(1+e^x)}{e^x-1}. We need to:
1) Determine the domain of ff.
2) Calculate the limits of ff at the boundaries of its domain and find the equations of any asymptotes.
3) Determine f(x)f'(x) and construct the variation table of ff.
4) Give the equation of the tangent to the curve CfC_f at the point with abscissa x=ln2x = \ln 2.
5) a) Determine the points of intersection of CfC_f with the coordinate axes. b) Sketch the graph of ff.
6) Let gg be the restriction of ff to the interval I=],0[I = ]-\infty, 0[. a) Show that gg is a bijection from II to an interval JJ which should be specified. b) Calculate g(ln2)g(\ln 2) and deduce (g1)(6)(g^{-1})'(-6).
7) a) Verify that for all xx in the domain of ff, f(x)=24exex1f(x) = 2 - \frac{4e^x}{e^x-1}. Deduce a primitive of ff on its domain. b) Calculate the area in cm2cm^2 of the planar region bounded by CfC_f, the line y=2y = 2, and the lines x=ln3x = -\ln 3 and x=ln2x = -\ln 2.

2. Solution Steps

Exercise 1:
1)
U0=eU_0 = e
U1=U0=eU_1 = \sqrt{U_0} = \sqrt{e}
V0=ln(U0)=ln(e)=1V_0 = \ln(U_0) = \ln(e) = 1
V1=ln(U1)=ln(e)=ln(e1/2)=12V_1 = \ln(U_1) = \ln(\sqrt{e}) = \ln(e^{1/2}) = \frac{1}{2}
2)
Vn+1=ln(Un+1)=ln(Un)=ln(Un1/2)=12ln(Un)=12VnV_{n+1} = \ln(U_{n+1}) = \ln(\sqrt{U_n}) = \ln(U_n^{1/2}) = \frac{1}{2} \ln(U_n) = \frac{1}{2} V_n
Thus, VnV_n is a geometric sequence with common ratio q=12q = \frac{1}{2} and first term V0=1V_0 = 1.
3)
Vn=V0×qn=1×(12)n=(12)nV_n = V_0 \times q^n = 1 \times (\frac{1}{2})^n = (\frac{1}{2})^n
Un=eVn=e(12)nU_n = e^{V_n} = e^{(\frac{1}{2})^n}
4)
Sn=V0+V1+...+VnS_n = V_0 + V_1 + ... + V_n
SnS_n is the sum of the first n+1n+1 terms of a geometric sequence.
Sn=V01qn+11q=1×1(12)n+1112=1(12)n+112=2(1(12)n+1)S_n = V_0 \frac{1 - q^{n+1}}{1 - q} = 1 \times \frac{1 - (\frac{1}{2})^{n+1}}{1 - \frac{1}{2}} = \frac{1 - (\frac{1}{2})^{n+1}}{\frac{1}{2}} = 2(1 - (\frac{1}{2})^{n+1})
5)
Pn=U0×U1×...×Un=eV0×eV1×...×eVn=eV0+V1+...+Vn=eSnP_n = U_0 \times U_1 \times ... \times U_n = e^{V_0} \times e^{V_1} \times ... \times e^{V_n} = e^{V_0 + V_1 + ... + V_n} = e^{S_n}
Pn=e2(1(12)n+1)P_n = e^{2(1 - (\frac{1}{2})^{n+1})}
6)
As nn \to \infty, (12)n0(\frac{1}{2})^n \to 0, so Vn0V_n \to 0.
As nn \to \infty, (12)n0(\frac{1}{2})^n \to 0, so Un=e(12)ne0=1U_n = e^{(\frac{1}{2})^n} \to e^0 = 1.
As nn \to \infty, (12)n+10(\frac{1}{2})^{n+1} \to 0, so Sn2(10)=2S_n \to 2(1 - 0) = 2.
As nn \to \infty, Sn2S_n \to 2, so Pn=eSne2P_n = e^{S_n} \to e^2.
Exercise 2:
1) The domain of ff is Df={xR:ex10}D_f = \{x \in \mathbb{R} : e^x - 1 \neq 0\}. This means ex1e^x \neq 1, so x0x \neq 0. Thus Df=R{0}=],0[]0,+[D_f = \mathbb{R} \setminus \{0\} = ]-\infty, 0[ \cup ]0, +\infty[.
2)
limxf(x)=limx2(1+ex)ex1=2(1+0)01=21=2\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{-2(1+e^x)}{e^x-1} = \frac{-2(1+0)}{0-1} = \frac{-2}{-1} = 2
limx+f(x)=limx+2(1+ex)ex1=limx+2(1ex+1)11ex=2(0+1)10=2\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{-2(1+e^x)}{e^x-1} = \lim_{x \to +\infty} \frac{-2(\frac{1}{e^x}+1)}{1-\frac{1}{e^x}} = \frac{-2(0+1)}{1-0} = -2
limx0f(x)=limx02(1+ex)ex1\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{-2(1+e^x)}{e^x-1}. As x0x \to 0^-, ex1e^x \to 1^-, so ex10e^x - 1 \to 0^-. Thus, the limit is 2(1+1)0=40=+\frac{-2(1+1)}{0^-} = \frac{-4}{0^-} = +\infty
limx0+f(x)=limx0+2(1+ex)ex1\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{-2(1+e^x)}{e^x-1}. As x0+x \to 0^+, ex1+e^x \to 1^+, so ex10+e^x - 1 \to 0^+. Thus, the limit is 2(1+1)0+=40+=\frac{-2(1+1)}{0^+} = \frac{-4}{0^+} = -\infty
Horizontal asymptotes: y=2y = 2 as xx \to -\infty and y=2y = -2 as x+x \to +\infty
Vertical asymptote: x=0x = 0
3)
f(x)=2(1+ex)ex1f(x) = \frac{-2(1+e^x)}{e^x-1}
f(x)=2ex(ex1)(2(1+ex))ex(ex1)2=2e2x+2ex+2ex+2e2x(ex1)2=4ex(ex1)2f'(x) = \frac{-2e^x(e^x-1) - (-2(1+e^x))e^x}{(e^x-1)^2} = \frac{-2e^{2x} + 2e^x + 2e^x + 2e^{2x}}{(e^x-1)^2} = \frac{4e^x}{(e^x-1)^2}
Since ex>0e^x > 0 for all xx, f(x)>0f'(x) > 0 for all x0x \neq 0.
4) At x=ln2x = \ln 2, f(ln2)=2(1+eln2)eln21=2(1+2)21=6f(\ln 2) = \frac{-2(1+e^{\ln 2})}{e^{\ln 2} - 1} = \frac{-2(1+2)}{2-1} = -6
f(ln2)=4eln2(eln21)2=4(2)(21)2=8f'(\ln 2) = \frac{4e^{\ln 2}}{(e^{\ln 2} - 1)^2} = \frac{4(2)}{(2-1)^2} = 8
Tangent equation: y=f(ln2)(xln2)+f(ln2)=8(xln2)6=8x8ln26y = f'(\ln 2)(x - \ln 2) + f(\ln 2) = 8(x - \ln 2) - 6 = 8x - 8\ln 2 - 6
5) a)
Intersection with the y-axis: occurs when x=0x = 0. However, x=0x=0 is not in the domain of ff. So there is no intersection with y-axis.
Intersection with the x-axis: occurs when f(x)=0f(x) = 0. This means 2(1+ex)=0-2(1+e^x) = 0, so 1+ex=01+e^x = 0, or ex=1e^x = -1. This has no solution since ex>0e^x > 0 for all xx. So there is no intersection with x-axis.
6) a) g(x)g(x) is strictly increasing on ],0[]-\infty, 0[, so it is injective.
As xx \to -\infty, g(x)2g(x) \to 2. As x0x \to 0^-, g(x)+g(x) \to +\infty. Thus J=]2,+[J = ]2, +\infty[.
Since gg is continuous and strictly increasing on II and maps II onto JJ, it is a bijection from II to JJ.
b) g(ln2)g(\ln 2) is undefined, because ln2>0\ln 2 > 0. The question meant g1(6)g^{-1}(-6). But since 6-6 is not in the range of g(x)g(x) on (,0)(-\infty, 0), g1(6)g^{-1}(-6) is undefined. The question probably had a typo or it was a trick question. Let's consider the value of g1(6)g^{-1}(-6) assuming g(x)=f(x)g(x)=f(x) for x>0x>0, so that we can consider f(x)f(x) around ln2\ln 2. Since f(ln2)=6f(\ln 2) = -6 and f(ln2)=8f'(\ln 2) = 8, then (g1)(6)=(f1)(6)=1f(ln2)=18(g^{-1})'(-6) = (f^{-1})'(-6) = \frac{1}{f'(\ln 2)} = \frac{1}{8}.
7) a)
24exex1=2(ex1)4exex1=2ex24exex1=2ex2ex1=2(ex+1)ex1=f(x)2 - \frac{4e^x}{e^x-1} = \frac{2(e^x-1)-4e^x}{e^x-1} = \frac{2e^x-2-4e^x}{e^x-1} = \frac{-2e^x-2}{e^x-1} = \frac{-2(e^x+1)}{e^x-1} = f(x)
f(x)=24exex1f(x) = 2 - \frac{4e^x}{e^x-1}
A primitive of 4exex1\frac{4e^x}{e^x-1} is 4lnex14\ln|e^x-1|. Therefore, a primitive of f(x)f(x) is 2x4lnex12x - 4\ln|e^x-1|.
b)
A=ln3ln2f(x)2dx=ln3ln24exex1dx=ln3ln24ex1exdxA = \int_{-\ln 3}^{-\ln 2} |f(x) - 2| dx = \int_{-\ln 3}^{-\ln 2} |- \frac{4e^x}{e^x-1}| dx = \int_{-\ln 3}^{-\ln 2} \frac{4e^x}{1-e^x} dx since ex<1e^x < 1 when x<0x<0.
Let u=1exu = 1 - e^x, so du=exdxdu = -e^x dx, and dx=duex=du1udx = -\frac{du}{e^x} = -\frac{du}{1-u}.
A=1eln31eln24udu=41131121udu=423121udu=4[lnu]2312=4(ln(12)ln(23))=4(ln(34))=4(ln3ln4)=4(ln4ln3)=4(ln22ln3)=4(2ln2ln3)=8ln24ln3A = \int_{1 - e^{-\ln 3}}^{1 - e^{-\ln 2}} \frac{-4}{u} du = -4 \int_{1 - \frac{1}{3}}^{1 - \frac{1}{2}} \frac{1}{u} du = -4 \int_{\frac{2}{3}}^{\frac{1}{2}} \frac{1}{u} du = -4 [\ln|u|]_{\frac{2}{3}}^{\frac{1}{2}} = -4 (\ln(\frac{1}{2}) - \ln(\frac{2}{3})) = -4 (\ln(\frac{3}{4})) = -4 (\ln 3 - \ln 4) = 4(\ln 4 - \ln 3) = 4(\ln 2^2 - \ln 3) = 4(2\ln 2 - \ln 3) = 8\ln 2 - 4\ln 3

3. Final Answer

U1=eU_1 = \sqrt{e}
V0=1V_0 = 1
V1=12V_1 = \frac{1}{2}
Vn=(12)nV_n = (\frac{1}{2})^n
Un=e(12)nU_n = e^{(\frac{1}{2})^n}
Sn=2(1(12)n+1)S_n = 2(1 - (\frac{1}{2})^{n+1})
Pn=e2(1(12)n+1)P_n = e^{2(1 - (\frac{1}{2})^{n+1})}
Domain of f: Df=R{0}D_f = \mathbb{R} \setminus \{0\}
Limits: limxf(x)=2\lim_{x \to -\infty} f(x) = 2, limx+f(x)=2\lim_{x \to +\infty} f(x) = -2, limx0f(x)=+\lim_{x \to 0^-} f(x) = +\infty, limx0+f(x)=\lim_{x \to 0^+} f(x) = -\infty
Asymptotes: y=2y = 2, y=2y = -2, x=0x = 0
f(x)=4ex(ex1)2f'(x) = \frac{4e^x}{(e^x-1)^2}
Tangent equation: y=8x8ln26y = 8x - 8\ln 2 - 6
No intersection with the axes.
Restriction gg bijection from ],0[]-\infty, 0[ to ]2,[]2, \infty[.
g(ln2)g(\ln 2) is undefined.
(g1)(6)(g^{-1})'(-6) is undefined.
A primitive of f(x)f(x) is 2x4lnex12x - 4\ln|e^x-1|.
A=8ln24ln3A = 8\ln 2 - 4\ln 3

Related problems in "Analysis"

We are asked to evaluate the double integral $\int_{-1}^{4}\int_{1}^{2} (x+y^2) \, dy \, dx$.

Double IntegralsIntegration
2025/6/5

The problem asks us to evaluate the double integral $\int_0^2 \int_1^3 x^2 y \, dy \, dx$.

Double IntegralIntegrationCalculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) dA$, where $R = \{(x, y): 1 \le x \le ...

Double IntegralsPiecewise FunctionsIntegrationMultivariable Calculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) \, dA$, where $R = \{(x, y): 1 \le x \...

Double IntegralsPiecewise FunctionsIntegration
2025/6/5

We are asked to evaluate the indefinite integral $\int xe^{-2x} dx$.

IntegrationIntegration by PartsIndefinite Integral
2025/6/5

We are asked to evaluate the triple integral $I = \int_0^{\log_e 2} \int_0^x \int_0^{x+\log_e y} e^{...

Multiple IntegralsIntegration by PartsCalculus
2025/6/4

The problem asks us to evaluate the following limit: $ \lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac...

LimitsTrigonometryCalculus
2025/6/4

We need to evaluate the limit of the expression $(x + \sqrt{x^2 - 9})$ as $x$ approaches negative in...

LimitsCalculusFunctionsConjugateInfinity
2025/6/4

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4