The problem asks us to evaluate the integral of the function $\frac{1}{(x+3)(x+6)}$.

AnalysisIntegrationPartial FractionsCalculus
2025/5/20

1. Problem Description

The problem asks us to evaluate the integral of the function 1(x+3)(x+6)\frac{1}{(x+3)(x+6)}.

2. Solution Steps

We will use partial fraction decomposition to solve the integral. We want to express 1(x+3)(x+6)\frac{1}{(x+3)(x+6)} in the form Ax+3+Bx+6\frac{A}{x+3} + \frac{B}{x+6}.
1(x+3)(x+6)=Ax+3+Bx+6 \frac{1}{(x+3)(x+6)} = \frac{A}{x+3} + \frac{B}{x+6}
Multiply both sides by (x+3)(x+6)(x+3)(x+6) to get:
1=A(x+6)+B(x+3) 1 = A(x+6) + B(x+3)
To solve for AA and BB, we can use the following system of equations by choosing appropriate values for xx.
Let x=3x = -3. Then
1=A(3+6)+B(3+3)1 = A(-3+6) + B(-3+3)
1=3A+01 = 3A + 0
A=13A = \frac{1}{3}
Let x=6x = -6. Then
1=A(6+6)+B(6+3)1 = A(-6+6) + B(-6+3)
1=03B1 = 0 - 3B
B=13B = -\frac{1}{3}
So, we have
1(x+3)(x+6)=1/3x+31/3x+6 \frac{1}{(x+3)(x+6)} = \frac{1/3}{x+3} - \frac{1/3}{x+6}
Now we integrate:
1(x+3)(x+6)dx=(1/3x+31/3x+6)dx \int \frac{1}{(x+3)(x+6)} dx = \int \left( \frac{1/3}{x+3} - \frac{1/3}{x+6} \right) dx
=131x+3dx131x+6dx = \frac{1}{3} \int \frac{1}{x+3} dx - \frac{1}{3} \int \frac{1}{x+6} dx
=13lnx+313lnx+6+C = \frac{1}{3} \ln |x+3| - \frac{1}{3} \ln |x+6| + C
We can combine the logarithms:
=13(lnx+3lnx+6)+C = \frac{1}{3} (\ln |x+3| - \ln |x+6|) + C
=13lnx+3x+6+C = \frac{1}{3} \ln \left| \frac{x+3}{x+6} \right| + C

3. Final Answer

The integral is 13lnx+3x+6+C\frac{1}{3} \ln \left| \frac{x+3}{x+6} \right| + C.

Related problems in "Analysis"

We are asked to evaluate the double integral $\int_{-1}^{4}\int_{1}^{2} (x+y^2) \, dy \, dx$.

Double IntegralsIntegration
2025/6/5

The problem asks us to evaluate the double integral $\int_0^2 \int_1^3 x^2 y \, dy \, dx$.

Double IntegralIntegrationCalculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) dA$, where $R = \{(x, y): 1 \le x \le ...

Double IntegralsPiecewise FunctionsIntegrationMultivariable Calculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) \, dA$, where $R = \{(x, y): 1 \le x \...

Double IntegralsPiecewise FunctionsIntegration
2025/6/5

We are asked to evaluate the indefinite integral $\int xe^{-2x} dx$.

IntegrationIntegration by PartsIndefinite Integral
2025/6/5

We are asked to evaluate the triple integral $I = \int_0^{\log_e 2} \int_0^x \int_0^{x+\log_e y} e^{...

Multiple IntegralsIntegration by PartsCalculus
2025/6/4

The problem asks us to evaluate the following limit: $ \lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac...

LimitsTrigonometryCalculus
2025/6/4

We need to evaluate the limit of the expression $(x + \sqrt{x^2 - 9})$ as $x$ approaches negative in...

LimitsCalculusFunctionsConjugateInfinity
2025/6/4

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4