次の方程式・不等式を解く問題です。 (1) $10^{2\log_{10}x} = 4$ (2) $\log_{\sqrt{2}}(2-x) + \log_2(x+1) = 1$ (3) $\log_3 x - 3\log_x 3 = 2$ (4) $\log_3 x + 2\log_9(x-6) < 3$ (5) $8(\log_2 \sqrt{x})^2 - 3\log_8 x^9 < 5$

代数学対数不等式方程式真数条件
2025/5/23

1. 問題の内容

次の方程式・不等式を解く問題です。
(1) 102log10x=410^{2\log_{10}x} = 4
(2) log2(2x)+log2(x+1)=1\log_{\sqrt{2}}(2-x) + \log_2(x+1) = 1
(3) log3x3logx3=2\log_3 x - 3\log_x 3 = 2
(4) log3x+2log9(x6)<3\log_3 x + 2\log_9(x-6) < 3
(5) 8(log2x)23log8x9<58(\log_2 \sqrt{x})^2 - 3\log_8 x^9 < 5

2. 解き方の手順

(1)
両辺の常用対数をとると
log10(102log10x)=log104\log_{10} (10^{2\log_{10}x}) = \log_{10} 4
2log10xlog1010=log1042\log_{10}x \cdot \log_{10} 10 = \log_{10} 4
2log10x=log1042\log_{10}x = \log_{10} 4
log10x=12log104=log10412=log102\log_{10}x = \frac{1}{2}\log_{10} 4 = \log_{10} 4^{\frac{1}{2}} = \log_{10} 2
したがって、x=2x = 2.
(2)
真数条件より、2x>02-x > 0 かつ x+1>0x+1 > 0。よって1<x<2-1 < x < 2.
log2(2x)=log2(2x)log22=log2(2x)12=2log2(2x)\log_{\sqrt{2}}(2-x) = \frac{\log_2 (2-x)}{\log_2 \sqrt{2}} = \frac{\log_2 (2-x)}{\frac{1}{2}} = 2\log_2 (2-x).
与式は
2log2(2x)+log2(x+1)=12\log_2 (2-x) + \log_2 (x+1) = 1
log2(2x)2+log2(x+1)=1\log_2 (2-x)^2 + \log_2 (x+1) = 1
log2[(2x)2(x+1)]=1\log_2 [(2-x)^2(x+1)] = 1
(2x)2(x+1)=21=2(2-x)^2(x+1) = 2^1 = 2
(44x+x2)(x+1)=2(4 - 4x + x^2)(x+1) = 2
4x+44x24x+x3+x2=24x + 4 - 4x^2 - 4x + x^3 + x^2 = 2
x33x2+2=0x^3 - 3x^2 + 2 = 0
(x1)(x22x2)=0(x-1)(x^2 - 2x - 2) = 0
x=1x = 1 または x=2±4+82=1±3x = \frac{2 \pm \sqrt{4+8}}{2} = 1 \pm \sqrt{3}.
1<x<2-1 < x < 2を満たすのは x=1x = 1のみ.
(3)
真数条件より、x>0x > 0 かつ x1x \neq 1.
log3x3logx3=2\log_3 x - 3\log_x 3 = 2
log3x3log3x=2\log_3 x - \frac{3}{\log_3 x} = 2
t=log3xt = \log_3 x とおくと t3t=2t - \frac{3}{t} = 2
t22t3=0t^2 - 2t - 3 = 0
(t3)(t+1)=0(t-3)(t+1) = 0
t=3t = 3 または t=1t = -1.
t=3t = 3 のとき、log3x=3\log_3 x = 3 より x=33=27x = 3^3 = 27.
t=1t = -1 のとき、log3x=1\log_3 x = -1 より x=31=13x = 3^{-1} = \frac{1}{3}.
x>0x > 0 かつ x1x \neq 1 を満たすので、x=27,13x = 27, \frac{1}{3}.
(4)
真数条件より、x>0x > 0 かつ x6>0x-6 > 0 より x>6x > 6.
log3x+2log9(x6)<3\log_3 x + 2\log_9 (x-6) < 3
log3x+2log3(x6)log39<3\log_3 x + 2 \frac{\log_3 (x-6)}{\log_3 9} < 3
log3x+2log3(x6)2<3\log_3 x + 2 \frac{\log_3 (x-6)}{2} < 3
log3x+log3(x6)<3\log_3 x + \log_3 (x-6) < 3
log3x(x6)<3\log_3 x(x-6) < 3
x(x6)<33x(x-6) < 3^3
x26x<27x^2 - 6x < 27
x26x27<0x^2 - 6x - 27 < 0
(x9)(x+3)<0(x-9)(x+3) < 0
3<x<9-3 < x < 9.
x>6x > 6 を満たすので 6<x<96 < x < 9.
(5)
真数条件より x>0x > 0.
8(log2x)23log8x9<58(\log_2 \sqrt{x})^2 - 3\log_8 x^9 < 5
8(log2x12)23log8x9<58(\log_2 x^{\frac{1}{2}})^2 - 3\log_8 x^9 < 5
8(12log2x)23log8x9<58(\frac{1}{2}\log_2 x)^2 - 3\log_8 x^9 < 5
8(14(log2x)2)3(9log8x)<58(\frac{1}{4}(\log_2 x)^2) - 3 (9 \log_8 x) < 5
2(log2x)227log2xlog28<52(\log_2 x)^2 - 27\frac{\log_2 x}{\log_2 8} < 5
2(log2x)227log2x3<52(\log_2 x)^2 - 27 \frac{\log_2 x}{3} < 5
2(log2x)29log2x5<02(\log_2 x)^2 - 9\log_2 x - 5 < 0
t=log2xt = \log_2 x とおくと 2t29t5<02t^2 - 9t - 5 < 0
(2t+1)(t5)<0(2t+1)(t-5) < 0
12<t<5-\frac{1}{2} < t < 5
12<log2x<5-\frac{1}{2} < \log_2 x < 5
212<x<252^{-\frac{1}{2}} < x < 2^5
12<x<32\frac{1}{\sqrt{2}} < x < 32

3. 最終的な答え

(1) x=2x = 2
(2) x=1x = 1
(3) x=27,13x = 27, \frac{1}{3}
(4) 6<x<96 < x < 9
(5) 12<x<32\frac{1}{\sqrt{2}} < x < 32