First, we rewrite the integral to resemble the form of the arctangent integral.
∫ 0 3 d x 4 x 2 + 1 = ∫ 0 3 d x ( 2 x ) 2 + 1 \int_{0}^{\sqrt{3}} \frac{dx}{4x^2+1} = \int_{0}^{\sqrt{3}} \frac{dx}{(2x)^2+1} ∫ 0 3 4 x 2 + 1 d x = ∫ 0 3 ( 2 x ) 2 + 1 d x We use the substitution u = 2 x u = 2x u = 2 x , so d u = 2 d x du = 2dx d u = 2 d x , and d x = 1 2 d u dx = \frac{1}{2}du d x = 2 1 d u . When x = 0 x = 0 x = 0 , u = 2 ( 0 ) = 0 u = 2(0) = 0 u = 2 ( 0 ) = 0 . When x = 3 x = \sqrt{3} x = 3 , u = 2 3 u = 2\sqrt{3} u = 2 3 . Thus, the integral becomes:
∫ 0 2 3 1 u 2 + 1 ⋅ 1 2 d u = 1 2 ∫ 0 2 3 1 u 2 + 1 d u \int_{0}^{2\sqrt{3}} \frac{1}{u^2+1} \cdot \frac{1}{2}du = \frac{1}{2} \int_{0}^{2\sqrt{3}} \frac{1}{u^2+1} du ∫ 0 2 3 u 2 + 1 1 ⋅ 2 1 d u = 2 1 ∫ 0 2 3 u 2 + 1 1 d u We know that ∫ 1 u 2 + 1 d u = arctan ( u ) + C \int \frac{1}{u^2+1} du = \arctan(u) + C ∫ u 2 + 1 1 d u = arctan ( u ) + C . Therefore,
1 2 ∫ 0 2 3 1 u 2 + 1 d u = 1 2 [ arctan ( u ) ] 0 2 3 = 1 2 ( arctan ( 2 3 ) − arctan ( 0 ) ) \frac{1}{2} \int_{0}^{2\sqrt{3}} \frac{1}{u^2+1} du = \frac{1}{2} [\arctan(u)]_{0}^{2\sqrt{3}} = \frac{1}{2} (\arctan(2\sqrt{3}) - \arctan(0)) 2 1 ∫ 0 2 3 u 2 + 1 1 d u = 2 1 [ arctan ( u ) ] 0 2 3 = 2 1 ( arctan ( 2 3 ) − arctan ( 0 )) Since arctan ( 0 ) = 0 \arctan(0) = 0 arctan ( 0 ) = 0 , we have 1 2 arctan ( 2 3 ) \frac{1}{2} \arctan(2\sqrt{3}) 2 1 arctan ( 2 3 ) However, there seems to be an error in the calculation.
Let's go back to the integral ∫ 0 3 d x 4 x 2 + 1 \int_{0}^{\sqrt{3}} \frac{dx}{4x^2+1} ∫ 0 3 4 x 2 + 1 d x . We can rewrite this as: ∫ 0 3 d x 4 ( x 2 + 1 4 ) = 1 4 ∫ 0 3 d x x 2 + ( 1 2 ) 2 \int_{0}^{\sqrt{3}} \frac{dx}{4(x^2 + \frac{1}{4})} = \frac{1}{4} \int_{0}^{\sqrt{3}} \frac{dx}{x^2 + (\frac{1}{2})^2} ∫ 0 3 4 ( x 2 + 4 1 ) d x = 4 1 ∫ 0 3 x 2 + ( 2 1 ) 2 d x The integral ∫ d x x 2 + a 2 = 1 a arctan ( x a ) + C \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan(\frac{x}{a}) + C ∫ x 2 + a 2 d x = a 1 arctan ( a x ) + C . So, 1 4 ∫ 0 3 d x x 2 + ( 1 2 ) 2 = 1 4 [ 1 1 2 arctan ( x 1 2 ) ] 0 3 = 1 4 [ 2 arctan ( 2 x ) ] 0 3 = 1 2 [ arctan ( 2 x ) ] 0 3 \frac{1}{4} \int_{0}^{\sqrt{3}} \frac{dx}{x^2 + (\frac{1}{2})^2} = \frac{1}{4} [\frac{1}{\frac{1}{2}} \arctan(\frac{x}{\frac{1}{2}})]_{0}^{\sqrt{3}} = \frac{1}{4} [2 \arctan(2x)]_{0}^{\sqrt{3}} = \frac{1}{2} [\arctan(2x)]_{0}^{\sqrt{3}} 4 1 ∫ 0 3 x 2 + ( 2 1 ) 2 d x = 4 1 [ 2 1 1 arctan ( 2 1 x ) ] 0 3 = 4 1 [ 2 arctan ( 2 x ) ] 0 3 = 2 1 [ arctan ( 2 x ) ] 0 3 = 1 2 [ arctan ( 2 3 ) − arctan ( 0 ) ] = 1 2 arctan ( 2 3 ) = \frac{1}{2} [\arctan(2\sqrt{3}) - \arctan(0)] = \frac{1}{2} \arctan(2\sqrt{3}) = 2 1 [ arctan ( 2 3 ) − arctan ( 0 )] = 2 1 arctan ( 2 3 ) However, we know that arctan ( 3 ) = π 3 \arctan(\sqrt{3}) = \frac{\pi}{3} arctan ( 3 ) = 3 π . So, the answer should be related to π \pi π . Let's reconsider the u u u -substitution: Let 2 x = tan θ 2x = \tan \theta 2 x = tan θ , so x = 1 2 tan θ x = \frac{1}{2} \tan \theta x = 2 1 tan θ . Then d x = 1 2 sec 2 θ d θ dx = \frac{1}{2} \sec^2 \theta d\theta d x = 2 1 sec 2 θ d θ . When x = 0 x=0 x = 0 , tan θ = 0 \tan \theta = 0 tan θ = 0 , so θ = 0 \theta = 0 θ = 0 . When x = 3 x=\sqrt{3} x = 3 , tan θ = 2 3 \tan \theta = 2\sqrt{3} tan θ = 2 3 , so θ = arctan ( 2 3 ) \theta = \arctan (2\sqrt{3}) θ = arctan ( 2 3 ) . The integral becomes ∫ 0 arctan ( 2 3 ) 1 2 sec 2 θ d θ tan 2 θ + 1 = ∫ 0 arctan ( 2 3 ) 1 2 sec 2 θ sec 2 θ d θ = 1 2 ∫ 0 arctan ( 2 3 ) d θ = 1 2 θ ∣ 0 arctan ( 2 3 ) = 1 2 arctan ( 2 3 ) \int_0^{\arctan (2\sqrt{3})} \frac{\frac{1}{2} \sec^2 \theta d\theta}{\tan^2 \theta + 1} = \int_0^{\arctan (2\sqrt{3})} \frac{\frac{1}{2} \sec^2 \theta}{\sec^2 \theta} d\theta = \frac{1}{2} \int_0^{\arctan (2\sqrt{3})} d\theta = \frac{1}{2} \theta \Big|_0^{\arctan (2\sqrt{3})} = \frac{1}{2} \arctan (2\sqrt{3}) ∫ 0 a r c t a n ( 2 3 ) tan 2 θ + 1 2 1 sec 2 θ d θ = ∫ 0 a r c t a n ( 2 3 ) sec 2 θ 2 1 sec 2 θ d θ = 2 1 ∫ 0 a r c t a n ( 2 3 ) d θ = 2 1 θ 0 a r c t a n ( 2 3 ) = 2 1 arctan ( 2 3 ) Still doesn't seem right.
Let u = 2 x u=2x u = 2 x . Then d u = 2 d x du=2dx d u = 2 d x , so d x = 1 2 d u dx=\frac{1}{2}du d x = 2 1 d u . Thus ∫ 0 3 d x 4 x 2 + 1 = ∫ 0 2 3 1 2 d u u 2 + 1 = 1 2 ∫ 0 2 3 d u u 2 + 1 = 1 2 [ arctan u ] 0 2 3 = 1 2 arctan ( 2 3 ) − 1 2 arctan 0 \int_0^{\sqrt{3}}\frac{dx}{4x^2+1} = \int_0^{2\sqrt{3}} \frac{\frac{1}{2}du}{u^2+1} = \frac{1}{2} \int_0^{2\sqrt{3}} \frac{du}{u^2+1} = \frac{1}{2}[\arctan u]_0^{2\sqrt{3}} = \frac{1}{2}\arctan(2\sqrt{3}) - \frac{1}{2}\arctan 0 ∫ 0 3 4 x 2 + 1 d x = ∫ 0 2 3 u 2 + 1 2 1 d u = 2 1 ∫ 0 2 3 u 2 + 1 d u = 2 1 [ arctan u ] 0 2 3 = 2 1 arctan ( 2 3 ) − 2 1 arctan 0 = 1 2 arctan ( 2 3 ) =\frac{1}{2}\arctan(2\sqrt{3}) = 2 1 arctan ( 2 3 )
The integral is ∫ 0 3 1 4 x 2 + 1 d x \int_{0}^{\sqrt{3}} \frac{1}{4x^2+1} dx ∫ 0 3 4 x 2 + 1 1 d x . Let u = 2 x u=2x u = 2 x , then d u = 2 d x du=2 dx d u = 2 d x so d x = 1 2 d u dx = \frac{1}{2} du d x = 2 1 d u . ∫ 0 3 1 4 x 2 + 1 d x = 1 2 ∫ 0 2 3 1 u 2 + 1 d u = 1 2 [ arctan ( u ) ] 0 2 3 = 1 2 ( arctan ( 2 3 ) − arctan ( 0 ) ) = 1 2 arctan ( 2 3 ) \int_{0}^{\sqrt{3}} \frac{1}{4x^2+1} dx = \frac{1}{2} \int_{0}^{2\sqrt{3}} \frac{1}{u^2+1} du = \frac{1}{2} [\arctan(u)]_{0}^{2\sqrt{3}} = \frac{1}{2} (\arctan(2\sqrt{3})-\arctan(0)) = \frac{1}{2} \arctan(2\sqrt{3}) ∫ 0 3 4 x 2 + 1 1 d x = 2 1 ∫ 0 2 3 u 2 + 1 1 d u = 2 1 [ arctan ( u ) ] 0 2 3 = 2 1 ( arctan ( 2 3 ) − arctan ( 0 )) = 2 1 arctan ( 2 3 ) . We have ∫ d x a 2 x 2 + 1 = 1 a arctan ( a x ) + C \int \frac{dx}{a^2 x^2 + 1} = \frac{1}{a} \arctan(ax) + C ∫ a 2 x 2 + 1 d x = a 1 arctan ( a x ) + C . In our case, ∫ 0 3 d x ( 2 x ) 2 + 1 = [ 1 2 arctan ( 2 x ) ] 0 3 = 1 2 arctan ( 2 3 ) − 1 2 arctan ( 0 ) = 1 2 arctan ( 2 3 ) \int_{0}^{\sqrt{3}} \frac{dx}{(2x)^2+1} = [\frac{1}{2} \arctan(2x)]_{0}^{\sqrt{3}} = \frac{1}{2} \arctan(2\sqrt{3}) - \frac{1}{2} \arctan(0) = \frac{1}{2} \arctan(2\sqrt{3}) ∫ 0 3 ( 2 x ) 2 + 1 d x = [ 2 1 arctan ( 2 x ) ] 0 3 = 2 1 arctan ( 2 3 ) − 2 1 arctan ( 0 ) = 2 1 arctan ( 2 3 ) .