We need to determine whether the given series converge or diverge. If they converge, we need to find their sum. We are given eight series. 1. $\sum_{k=1}^{\infty} (\frac{1}{7})^k$

AnalysisSeriesConvergenceDivergenceGeometric SeriesTelescoping SeriesDivergence Test
2025/5/27

1. Problem Description

We need to determine whether the given series converge or diverge. If they converge, we need to find their sum. We are given eight series.

1. $\sum_{k=1}^{\infty} (\frac{1}{7})^k$

2. $\sum_{k=1}^{\infty} (-\frac{1}{4})^{-k-2}$

3. $\sum_{k=0}^{\infty} [2(\frac{1}{4})^k + 3(-\frac{1}{5})^k]$

4. $\sum_{k=1}^{\infty} [5(\frac{1}{2})^k - 3(\frac{1}{7})^{k+1}]$

5. $\sum_{k=1}^{\infty} \frac{k-5}{k+2}$

6. $\sum_{k=1}^{\infty} (\frac{9}{8})^k$

7. $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$

8. $\sum_{k=1}^{\infty} \frac{3}{k}$

2. Solution Steps

1. $\sum_{k=1}^{\infty} (\frac{1}{7})^k$

This is a geometric series with a=17a = \frac{1}{7} and r=17r = \frac{1}{7}. Since r=17<1|r| = |\frac{1}{7}| < 1, the series converges. The sum of the geometric series is given by
S=a1r=17117=1767=16S = \frac{a}{1-r} = \frac{\frac{1}{7}}{1-\frac{1}{7}} = \frac{\frac{1}{7}}{\frac{6}{7}} = \frac{1}{6}.

2. $\sum_{k=1}^{\infty} (-\frac{1}{4})^{-k-2} = \sum_{k=1}^{\infty} (-4)^{k+2} = \sum_{k=1}^{\infty} (-4)^2 (-4)^k = 16 \sum_{k=1}^{\infty} (-4)^k$

This is a geometric series with a=4a = -4 and r=4r = -4. Since r=4=4>1|r| = |-4| = 4 > 1, the series diverges.

3. $\sum_{k=0}^{\infty} [2(\frac{1}{4})^k + 3(-\frac{1}{5})^k] = 2 \sum_{k=0}^{\infty} (\frac{1}{4})^k + 3 \sum_{k=0}^{\infty} (-\frac{1}{5})^k$

The first series is a geometric series with a=1a = 1 and r=14r = \frac{1}{4}. Since 14<1|\frac{1}{4}| < 1, the series converges to 1114=134=43\frac{1}{1-\frac{1}{4}} = \frac{1}{\frac{3}{4}} = \frac{4}{3}.
The second series is a geometric series with a=1a = 1 and r=15r = -\frac{1}{5}. Since 15<1|-\frac{1}{5}| < 1, the series converges to 11(15)=11+15=165=56\frac{1}{1-(-\frac{1}{5})} = \frac{1}{1+\frac{1}{5}} = \frac{1}{\frac{6}{5}} = \frac{5}{6}.
Thus, the sum is 2(43)+3(56)=83+156=166+156=3162 (\frac{4}{3}) + 3 (\frac{5}{6}) = \frac{8}{3} + \frac{15}{6} = \frac{16}{6} + \frac{15}{6} = \frac{31}{6}.

4. $\sum_{k=1}^{\infty} [5(\frac{1}{2})^k - 3(\frac{1}{7})^{k+1}] = 5 \sum_{k=1}^{\infty} (\frac{1}{2})^k - 3 \sum_{k=1}^{\infty} (\frac{1}{7})^{k+1} = 5 \sum_{k=1}^{\infty} (\frac{1}{2})^k - \frac{3}{7} \sum_{k=1}^{\infty} (\frac{1}{7})^k$

The first series is a geometric series with a=12a = \frac{1}{2} and r=12r = \frac{1}{2}. Its sum is 12112=1212=1\frac{\frac{1}{2}}{1-\frac{1}{2}} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1.
The second series is a geometric series with a=17a = \frac{1}{7} and r=17r = \frac{1}{7}. Its sum is 17117=1767=16\frac{\frac{1}{7}}{1-\frac{1}{7}} = \frac{\frac{1}{7}}{\frac{6}{7}} = \frac{1}{6}.
Thus, the sum is 5(1)37(16)=5342=5114=70114=69145(1) - \frac{3}{7} (\frac{1}{6}) = 5 - \frac{3}{42} = 5 - \frac{1}{14} = \frac{70-1}{14} = \frac{69}{14}.

5. $\sum_{k=1}^{\infty} \frac{k-5}{k+2}$

We can apply the divergence test. We have limkk5k+2=limk15k1+2k=11=10\lim_{k \to \infty} \frac{k-5}{k+2} = \lim_{k \to \infty} \frac{1 - \frac{5}{k}}{1 + \frac{2}{k}} = \frac{1}{1} = 1 \ne 0.
Since the limit is not 0, the series diverges.

6. $\sum_{k=1}^{\infty} (\frac{9}{8})^k$

This is a geometric series with a=98a = \frac{9}{8} and r=98r = \frac{9}{8}. Since 98>1|\frac{9}{8}| > 1, the series diverges.

7. $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$

This is a telescoping series. Let's consider the partial sum:
Sn=k=2n(1k1k1)=(1211)+(1312)+(1413)++(1n1n1)S_n = \sum_{k=2}^{n} (\frac{1}{k} - \frac{1}{k-1}) = (\frac{1}{2} - \frac{1}{1}) + (\frac{1}{3} - \frac{1}{2}) + (\frac{1}{4} - \frac{1}{3}) + \cdots + (\frac{1}{n} - \frac{1}{n-1})
=1n1= \frac{1}{n} - 1.
Therefore, limnSn=limn(1n1)=01=1\lim_{n \to \infty} S_n = \lim_{n \to \infty} (\frac{1}{n} - 1) = 0 - 1 = -1. The series converges to -
1.

8. $\sum_{k=1}^{\infty} \frac{3}{k} = 3 \sum_{k=1}^{\infty} \frac{1}{k}$

This is a constant multiple of the harmonic series k=11k\sum_{k=1}^{\infty} \frac{1}{k}, which is known to diverge. Therefore, this series also diverges.

3. Final Answer

1. Converges, Sum = 1/6

2. Diverges

3. Converges, Sum = 31/6

4. Converges, Sum = 69/14

5. Diverges

6. Diverges

7. Converges, Sum = -1

8. Diverges

Related problems in "Analysis"

The problem is to solve the equation $\sin(x - \frac{\pi}{2}) = -\frac{\sqrt{2}}{2}$ for $x$.

TrigonometryTrigonometric EquationsSine FunctionPeriodicity
2025/5/29

We are asked to evaluate the limit: $\lim_{x \to +\infty} \frac{(2x-1)^3(x+2)^5}{x^8-1}$

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the function $\frac{(2x-1)^3(x+2)^5}{x^8-1}$ as $x$ approaches inf...

LimitsFunctionsAsymptotic Analysis
2025/5/29

We need to evaluate the definite integral and subtract a constant. The expression is: $A(R) = \int_{...

Definite IntegralIntegrationCalculus
2025/5/28

We are asked to evaluate the definite integral $\int_{-4}^3 [3-x-(x^2-a)] dx - \frac{\pi 3^2}{2}$.

Definite IntegralIntegrationCalculus
2025/5/28

We are asked to find the area bounded by the function $f(x) = \frac{4}{3}x^3 - 7.5x^2 + 10x$, the x-...

CalculusDefinite IntegralFinding MaximaDerivativesArea under a curve
2025/5/28

We need to find the area of the region limited by the graphs of the following functions: a) $f(x) = ...

Definite IntegralsArea CalculationAbsolute ValuePiecewise FunctionsCalculus
2025/5/28

The problem asks to find the area of the region bounded by the graph of $f(x) = |x| - |x-1|$ on the ...

Absolute ValueIntegrationPiecewise FunctionsDefinite IntegralArea Calculation
2025/5/28

We need to find the convergence set for the given power series. Let's solve the problems one by one.

Power SeriesRatio TestInterval of ConvergenceSeries Convergence
2025/5/28

We need to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n^3}{(2n...

SeriesConvergenceDivergenceRatio TestLimits
2025/5/28