AからDまでの4種類のカードがそれぞれ1枚ずつあるとき、この中から2枚を選ぶ組み合わせの総数を求める問題です。

確率論・統計学組み合わせ確率場合の数順列
2025/5/28

1. 問題の内容

AからDまでの4種類のカードがそれぞれ1枚ずつあるとき、この中から2枚を選ぶ組み合わせの総数を求める問題です。

2. 解き方の手順

この問題は組み合わせの問題なので、組み合わせの公式を使います。4種類の中から2種類を選ぶ組み合わせの数は、4C2_4C_2 で表されます。
4C2_4C_2 は次のように計算できます。
4C2=4!2!(42)!_4C_2 = \frac{4!}{2!(4-2)!}
ここで n!n!nn の階乗を表し、n!=n×(n1)×(n2)××2×1n! = n \times (n-1) \times (n-2) \times \dots \times 2 \times 1 です。
4C2=4!2!2!=4×3×2×1(2×1)(2×1)=244=6_4C_2 = \frac{4!}{2!2!} = \frac{4 \times 3 \times 2 \times 1}{(2 \times 1)(2 \times 1)} = \frac{24}{4} = 6
したがって、2枚を選ぶ組み合わせは6通りです。

3. 最終的な答え

6

「確率論・統計学」の関連問題

サイコロを繰り返し投げ、出た目に応じて得点を定める問題です。 (1)ではルールAに従って得点を計算します。ルールAは、k回目に初めて1が出たら7点、それ以外は出た目の数を得点とするというものです。 (...

確率期待値サイコロ
2025/5/29

一つのサイコロを繰り返し投げ、出た目に応じて得点を定める問題です。ルールAが与えられており、それに基づいて確率や期待値を計算します。具体的には、 * 1回目の得点が7点となる確率、4点以上となる確...

確率期待値条件付き確率サイコロ
2025/5/29

ある町の住民20人に対して、リニューアルされた道の駅についてアンケートを行ったところ、15人が「リニューアル後の方が利用しやすい」と回答した。 硬貨を20回投げる試行を200セット行った結果の表を用い...

統計的仮説検定二項分布確率割合
2025/5/29

図2と図3の散布図と相関係数の値から、選択肢(0~4)の中から正しいものを2つ選択する問題です。図2は道の駅の数と観光客数、図3はホテルと旅館の合計数と観光客数の関係を表しています。

相関散布図相関係数データ分析
2025/5/29

図1のヒストグラムのデータを箱ひげ図で表したとき、最も適切なものを選択肢の0~3の中から選ぶ問題です。ヒストグラムは、47都道府県別のホテルと旅館の合計数を表しています。

箱ひげ図ヒストグラムデータ分析四分位数
2025/5/29

表2に示されたグループA(6府県の道の駅の数)のデータの標準偏差を求め、選択肢の中から最も近い値を選ぶ問題。さらに、グループAとグループBの標準偏差を比較し、データの散らばり具合について適切な選択肢を...

標準偏差分散データの散らばり
2025/5/29

表1に示された47都道府県別の道の駅の数に関するデータについて、データの範囲と最頻値を求める問題です。

データの範囲最頻値統計
2025/5/29

表1と表2が与えられている。表1は47都道府県の道の駅の数、表2は表1から抜き出したグループAとグループBの道の駅の数である。グループBの標準偏差は7である。グループAのデータの標準偏差に最も近い値と...

標準偏差分散データ分析統計
2025/5/29

表は30人の生徒のテストAとテストBの得点分布を表しています。表の各マスには、その得点組み合わせの人数が記載されています。問題は、 (1) $a+b$ の値を求め、テストAの平均点がちょうど2であると...

相関係数平均値中央値度数分布統計
2025/5/29

30人の生徒に対して行われたテストAとテストBの得点分布表が与えられている。この表をもとに、以下の問いに答える。 (1) 表中の $a$ と $b$ の値を求め、$a+b$ の値を求める。さらに、テス...

統計平均中央値相関係数データ分析
2025/5/29